
INTRODUCTION

Spacecraft on-board computers are responsible for controlling the
spacecraft platform, payloads, or other on-board devices. Their
mission-specific software allows communication with ground or
other on-board computers. Traditionally, on-board software has
been written close to the hardware in assembly language, Ada, C,
or C++, with or without a real-time operating system (RTOS) [1].

As the spacecraft computer hardware capabilities are increas-
ing, spacecraft software is becoming larger and more complex,
handling more tasks from payload data processing to landing a first
stage of a launch vehicle on an ocean-going barge. Spacecraft will
still continue to include very small embedded systems that can be
developed without operating systems (OS), but some systems will
also have large software bases, requiring efficient software devel-
opment processes and reuse of existing software modules.

The last decade has seen increasing use of Linux in spacecraft
on-board software. This article presents common features of space-
craft on-board computers and software and discusses potential
benefits and drawbacks of on-board Linux use. The focus of this
article is on spacecraft on-board avionics software, that is, space-
craft-controlling code that flies into orbit with the spacecraft. Other
types of computers are not included in this analysis; for example,
many laptops on the International Space Station run Linux [2].

BACKGROUND

SPACECRAFT ON-BOARD COMPUTERS

Spacecraft on-board computers are responsible for handling tele-
commands sent by ground, providing telemetry to the ground, pro-
cessing on-board data, and controlling the spacecraft platform and
payload devices. A spacecraft may have one or several on-board
computers that handle different tasks. Similar to other embedded
computers, a spacecraft on-board computer usually has at least a
processor, random access memory (RAM), read-only memory for
boot code, mass memory, data bus interfaces, and a power supply.
Perhaps unlike many other embedded computers, some parts of

the on-board computer may be made redundant to circumvent any
possible hardware malfunctions.

According to Eickhoff [1], radiation-hardened SPARC, Pow-
erPC, MIPS, and Intel x86 architectures have been popular in
traditional industrial and governmental space applications. Uni-
versity small satellite missions have tended to use a larger variety
of processors, especially from the ARM family. According to a
2010 analysis [3], low-power microcontrollers such as the Mi-
crochip PIC series and the Texas Instruments MSP series have
been popular in CubeSats before 2010, while ARM microcon-
trollers were becoming more popular due to their greater process-
ing power. Some inexpensive commercial off-the-shelf (COTS)
microcontrollers, such as the Texas Instruments Hercules family,
have safety-critical features previously usually seen in expensive
high-reliability processors, making them attractive for space ap-
plications [4].

SPACECRAFT ON-BOARD SOFTWARE

The on-board software running on the on-board computer is re-
sponsible for utilizing the computer's hardware resources and in-
terfaces to achieve its specified mission, such as controlling the
spacecraft or some platform or payload instrument. On-board soft-
ware must typically provide at least a telecommand and telemetry
interface that is utilized by ground control or some other on-board
software running on another on-board computer. On-board soft-
ware can be roughly divided into three parts: hardware driver soft-
ware for providing abstractions of the underlying hardware, OS for
providing task and resource management, and application software
for providing the mission-specific functionality. This division is
illustrated in Figure 1. Some simple on-board software may not
need an OS at all.

The hardware driver software is usually provided by the hard-
ware manufacturer as a software abstraction of their hardware, and
various users of the same hardware in different industrial domains
may use the same driver software.

The OS is an optional component, and in many cases it has not
been used at all. In some cases, the OS itself may provide the ab-
straction of hardware instead of separate hardware driver software.
Historically, much of spacecraft flight software was written from
ground up using assembly language. Ada programming language,
which has long had advanced tasking features, has been used to
build on-board software systems running several threads of execu-
tion. However, recently the use of Ada has been reduced in favor of
using real-time OS along with C and C++ programming languages
due to the larger availability of developers for these languages.
When most of the software has been written from scratch, the end

Authors' address: Aalto University, Department of Radio
Science and Engineering, Otakaari 5A, 02150 Espoo, Finland.
E-mail: (hannu.leppinen@aalto.fi).
Manuscript received August 18, 2016, revised October 12,
2016, November 27, 2016, and ready for publication January
24, 2017.
Review handled by M. Jah.
0885/8985/17/$26.00 © 2017 IEEE

Feature Article:

Current Use of Linux in Spacecraft Flight Software
Hannu Leppinen, Aalto University, Espoo, Finland

DOI . No. 10. 1 109/MAES.2017 . 160182

4	 IEEE A&E SYSTEMS MAGAZINE	 OCTOBER 2017

aesm-32-09-01 Page 4 PDF Created: 2017-11-20: 6:56:AM

result has tended to be very tightly coupled, and not well suited for
later use in other projects [5].

When OS have been used in spacecraft, common selections
have included VxWorks and RTEMS. Both VxWorks and RTEMS
are RTOSs designed for embedded systems and commonly used in
safety-critical hard real-time applications [1]. University small sat-
ellite missions have also used other general purpose RTOSs, such
as FreeRTOS [4].

EMBEDDED LINUX

The term Linux strictly refers to the OS kernel originally devel-
oped by Linus Torvalds since 1991. Linux is used in embedded
systems because of quality and availability of code, wide hardware
support, implementations of communication protocols and appli-
cation programming interfaces, available development tools, fa-
vorable licensing conditions, vendor independence, and cost. The
Linux kernel can be run in various Linux systems from very small
embedded computers to supercomputer clusters. Each system has a
different purpose and different software packages and applications.

Linux has been ported to many architectures: as of this writ-
ing, the Linux kernel readme file lists at least 22 supported ar-
chitectures. According to Yaghmour [6], architectures mostly used

in embedded Linux applications include ARM, AVR32, Intel x86,
M32R, MIPS, Motorola 68000, PowerPC, and SuperH. Linux is
also available for the LEON processors commonly used in the
European space industry. Thus Linux is available for most of the
architectures commonly used in space applications mentioned in
the previous section.

A generic on-board software architecture using Linux is de-
picted in Figure 2. Linux provides OS facilities such as virtual
memory, processes, communication sockets, and files. The kernel
is responsible for driving the devices, managing input-output ac-
cess, scheduling processes, enforcing memory sharing, and han-
dling signals. The kernel is typically started by a bootloader, and
is never stopped while the embedded device is running. The Linux
kernel has support for many data buses and communication proto-
cols useful for spacecraft developers, including at least CAN bus,
Modbus, SPI, I2C, and serial port [6]. CAN is one of the on-board
data buses already used in the space industry, and is directly sup-
ported by Linux [1].

Many commercial embedded Linux distributions exist for vari-
ous platforms, but embedded developers may also build their cus-
tom distributions using the kernel source code. Buildroot is one
commonly used tool for this purpose. uClibc, a lightweight C li-
brary, is often used to replace the standard GNU C library used

Figure 1.
Generic on-board software architecture.

Figure 2.
Generic on-board software architecture with Linux kernel. Adapted from [6].

OCTOBER 2017	 IEEE A&E SYSTEMS MAGAZINE	 5

aesm-32-09-01 Page 5 PDF Created: 2017-11-20: 6:56:AM

Current Use of L inux in Spacecraft F l ight Software

in desktop applications. BusyBox is often used to include many
UNIX-like tools in embedded applications where only limited re-
sources are available [6]–[8].

μCLinux is a version of Linux developed for processors that
lack a memory management unit, but provides the same basic
functionalities as Linux [6].

Linux has been designed as a general purpose OS and thus does
not directly support hard real-time applications [6]. However, solu-
tions have been designed to address this limitation and we discuss
these in the next section about advantages and drawbacks.

LINUX IN ORBIT

This section reviews Linux use in various spacecraft. The analysis
is limited to a selection of missions that have academically pub-
lished their Linux use. The selection includes educational, govern-
mental, and commercial missions. More than a hundred spacecraft,
many by Planet and SpaceX, have flown Linux. The discussed
missions are summarized in Table 1.

Possibly the first study of using Linux in spacecraft dates to the
NASA FlightLinux project that ran from 1999 to 2002. The proj-
ect aimed to provide an on-orbit demonstration of the Linux OS;
the demonstration target was the UoSat-12 satellite operated by
Surrey Satellite Technology Ltd. The rationale for this demonstra-
tion was to try extending the COTS philosophy used in hardware
to the software domain by using an off-the-shelf OS with many
available software packages, that is, Linux. The kernel and a de-
compression program were fitted within a space of approximately
400 kB, and the system only had 4 MB of RAM available. Linux
provided networking and filesystem facilities and supported high-
level programming languages, such as Java. The kernel setup rou-
tine was modified to support the UoSat-12 hardware. The planned
UoSat-12 test was very primitive, such as printing “Hello World!”
to a serial port [30].

Many CubeSat missions, including the Aalto-1 mission op-
erated by Aalto University [10], have used Linux in their flight
computers. Aalto-1 uses an AT91RM9200-based computer with a
customized 3.4 kernel prepared using Buildroot. Aalto-1, shown
in Figure 3, was launched on June 23, 2017. As the mission began
recently and is still ongoing, it is not analysed in this article.

A microsatellite example is TacSat-1, which used Linux
in its Copperfield-2 payload in PowerPC MPC823, PowerPC
PowerQuicc II 8260, and StrongArm SA1110 computers. Linux
was considered possible since there were no hard real-time
requirements for the payload software, and thus no real-time
adaptations of Linux were used. The payload computers, com-
municating via TCP/IP, processed sensor data and provided
payload data storage and handling infrastructure. Linux also
provided scripting engines as an additional benefit; Perl and Py-
thon were evaluated, but shell scripting was decided to be used.
Many payload functionalities were implemented as scripts, and
the data flow between software was handled via standard in-
put and output. This allowed quick interfacing with existing,
off-the-shelf Linux software. Most of the custom software de-
veloped for TacSat-1 handled conversion between TCP/IP and
OX.25 protocols. Development was possible on x86 PCs, while

the target itself had PowerPC architecture. However, TacSat-1
was never launched [9].

The following subsections discuss some of the missions in
Table 1.

QUAKESAT

One of the earliest CubeSats to fly Linux was QuakeSat, which
was a 3U CubeSat built at Stanford University for QuakeFinder
LLC. It aimed to study extremely low-frequency magnetic signals
in order to possibly predict earthquake activity. QuakeSat also
aimed to demonstrate the usefulness of COTS electronics and the
CubeSat standard for the development of low-cost space missions.

QuakeSat's command and data handling system operated with
timed commands to perform payload data gathering when histori-
cally active earthquake areas were within the range of the instru-
ment. QuakeSat had no digital on-board mission data processing.
All electronics were embedded on a single circuit board. Diamond
Systems Prometheus PC-104 processor board was used as the
command and data handling system hardware, and a version of
Linux provided by Diamond Systems was used as the OS. Linux
was chosen since many of the required device drivers were already
available. The processor was clocked down to 66 MHz, and the
system had 32 MB of RAM and a 192 MB Flash disk for storage.
In addition to Linux, the flight software consisted of some 10,000
lines of code, some of which included already existing AX.25 and
modem drivers. Flight software features included communication
with an on-board UHF modem, AX.25 libraries, other radio utili-
ties, payload data collection and compression, data downlink, and
command execution. Bzip2 compression was used for the payload
data.

The satellite had only passive magnetic attitude control. The
QuakeSat command and data handling system performed time-
based operations, with operation times selected on the predicted
position of the satellite. The command and data handling system
was able to store commands and data for one day. Schedule files
were uploaded to the satellite, and payload data files were com-
pressed and downlinked from the satellite. The satellite operator
was also able to query real-time telemetry from the satellite. The
operator also needed to synchronize the satellite clock every three
days. The satellite performed well in orbit, and collected useful
scientific data [11], [12].

UWE-1 AND UWE-2

UWE-1 and UWE-2 were 1 kg CubeSats built by the University of
Würzburg, and they were launched in 2005 and 2009, respectively.
The UWE satellites aimed to test various small satellite technolo-
gies, including the use of internet protocols in space. Both used a
similar on-board computer, which included a 16-bit Hitachi H8S
2764 microprocessor. The computer had 8 MB of RAM and 4 MB
of nonvolatile flash memory. The 16-bit processor did not have a
memory management unit, requiring the use of μClinux. The com-
puter consumed only 300 mW during nominal operations; the low
power consumption was one of the reasons to select the micro-
controller, as it allowed more power for other experiments. The

6	 IEEE A&E SYSTEMS MAGAZINE	 OCTOBER 2017

aesm-32-09-01 Page 6 PDF Created: 2017-11-20: 6:56:AM

Leppinen

processor also had the required interfaces, such as I2C and serial
port, to communicate with other hardware on the satellite. μClinux
was selected because of the Linux portability and availability of
software; only the application-specific software modules needed to
be developed. Linux also had the internet protocol stack available
for the technology demonstrations.

Although the UWE-1 on-board software performed well, it
was rewritten for UWE-2 in order to be more extensible. Software
was written in C due to its good integration with Linux, and due
to the availability of C cross-compiler for the selected processor.
The application software was realized as several Linux programs
running in parallel, including programs for system control, radio
control, battery control, housekeeping, logging, and sensors. The
programs communicated through the Linux interprocess commu-
nication facilities.

UWE-1 completed its demonstration mission within a few
weeks after launch, and UWE-2 was also operated successfully
[14], [15].

Table 1.

List of Analysed Spacecraft

Name Operator Launch Date Details Sources

TacSat-1 Naval Research
Laboratory

Not launched PowerPC MPC823 and
PowerQuicc II 8260,
StrongArm SA1110

[9]

Aalto-1 Aalto University 2017 AT91RM9200-based embedded
computer, Linux 3.4 prepared
with Buildroot

[10]

QuakeSat QuakeFinder LLC 2003 Diamond Systems Prometheus
PC/104 x86 CPU module with
Red Hat Linux

[11] [12]

MidSTAR-1 United States Naval
Academy

2007 ARM Linux on a payload
controller

[13]

UWE-11, UWE-
22

University of
Würzburg

12005, 22009 Hitachi H8S 2674 16-bit
microprocessor, μClinux

[14] [15]

X-Sat Nanyang
Technological
University

2011 Payload controller: Linux on
several StrongArm SA1110
processors

[16]

IPEX Cal Poly San Luis
Obispo, JPL

2013 400 MHz Atmel ARM9 CPU
based computer, Linux 2.6.30

[17] [18]

STRaND-1 Surrey Space Centre 2013 Digi-Wi9C with μClinux and
Google Nexus One with
Android

[19] [20]

LightSail-1 The Planetary
Society

2015 Tyvak Intrepid v6 single-board
computer

[21] [22]

PhoneSat
satellites

NASA Several since 2013 Google Nexus One and Nexus
S with Android 2.2

[23]

Dove satellites Planet Several since 2013 Low-power COTS x86
processors, Ubuntu server

[24] [25]

Falcon 9,
Dragon

SpaceX Several since 2010 Multiple COTS computers,
custom Linux 3.2 with real-
time patches

[26] [27] [28]
[29]

Figure 3.
Aalto-1 is one of the CubeSats using Linux. Photo: Aalto University.

OCTOBER 2017	 IEEE A&E SYSTEMS MAGAZINE	 7

aesm-32-09-01 Page 7 PDF Created: 2017-11-20: 6:56:AM

Current Use of L inux in Spacecraft F l ight Software

IPEX

IPEX was a 1 kg CubeSat developed by Cal Poly San Luis Obispo
and Jet Propulsion Laboratory (JPL) that aimed to validate tech-
nologies for on-board instrument processing and autonomous op-
erations. The main computer had a 400 MHz Atmel ARM9 proces-
sor with 128 MB RAM, a few megabytes of radiation resistant
PRAM, 512 MB NAND Flash, and a 16 GB microSD card. Linux
2.6.30 was used. The satellite additionally carried a Gumstix Earth
Storm single-board computer with an 800 MHz ARM processor,
512 MB RAM, 512 MB NAND Flash, and also running Linux. The
satellite had several cameras as payload, and had high processing
power requirements. The two computers were linked with a serial
link. An on-board software, CASPER, managed the spacecraft re-
sources autonomously.

The flight software of IPEX was based on extending and adapt-
ing Linux facilities. The System V init process was used to start
and restart main components of the flight software. Operations
were based on uploading observation and ground contact sched-
ules. Uplink and downlink bandwidth was limited, which made
operations harder. The developers noted that more software could
have been preloaded on the computer, since nonvolatile storage
was abundant, while it was very hard to upload large pieces of
software during the mission. IPEX computer used reboots to clear
problems possibly caused by radiation, which grew more frequent
as the mission progressed. The satellite stopped communicating in
early 2015, but its mission of demonstrating on-board autonomy
was successfully completed [17], [18].

STRAND-1 AND PHONESAT SATELLITES

The Android OS is based on Linux, and at least two projects have
used Android smartphones to build satellite on-board computers.
Smartphones contain many technologies useful for small satellites,
such as low-power yet capable processors, gyroscopes, accelerom-
eters, cameras, and communication interfaces.

STRaND-1 was a CubeSat built by Surrey Space Centre and
Surrey Satellite Technology Ltd that aimed to explore new ways
of including smartphone technologies to CubeSat platforms. While
the satellite main computer ran FreeRTOS, STRaND-1 used in its
payload μClinux in a Digi-Wi9C single board computer and An-
droid on a Google Nexus One smartphone. The satellite main com-
puter communicated with the Digi-Wi9C via I2C, while Digi-Wi9C
communicated with the smartphone via USB and Wi-Fi using for
example the telnet protocol. One of the aims of the mission was
to test transferring control of the satellite to the smartphone and
its Android applications. The satellite was launched in early 2013,
and experienced initial communication problems but was recov-
ered and continued its mission in summer 2013 [19], [20].

The NASA PhoneSat technology demonstration project aimed
to demonstrate building very low-cost nanosatellites using smart-
phones and other consumer technology. The project has launched
several smartphone-based nanosatellites that used Google Nexus
One and Nexus-S smartphones as on-board computers. Several
PhoneSats have been launched since 2013, and the smartphone
cameras have successfully taken pictures of the Earth [23].

LIGHTSAIL-1

LightSail-1 was a CubeSat developed by the Planetary Society and
launched in 2015. Its purpose was to test the deployment of a solar
sail in space. The LightSail-1 avionics consisted of two processor
boards with different tasks. The main board handled the spacecraft
command, control, data collection, and telemetry, and the payload
interface board focused on attitude control and managing the solar
sail payload deployment. The main board was a Tyvak Intrepid v6
single-board computer and used Linux, and the payload interface
board used a 16-bit PIC33 processor. Flight software was written
in C for both the Linux-running Intrepid and the PIC processor.
While the Linux system could run several processes and support
many libraries and interfaces, the PIC processor ran a simple 5 Hz
control loop for attitude control and solar sail deployment.

During the mission, a problem in the Linux system was discov-
ered that caused a temporary loss of control. A comma-separated
values file grew out of bounds due to a bug, causing the system to
halt; fortunately, a radiation-induced single-event effect caused the
main computer to reboot, temporarily fixing the problem, and al-
lowing a bug fix to be applied in orbit. After the bug fix, the solar
sail deployment was successfully performed just in time before the
low-flying satellite deorbited [21], [22].

DOVE SATELLITES

Planet, formerly Planet Labs, aims to provide high-resolution im-
agery of the whole Earth at high refresh rates by using constella-
tions of tens to hundreds of CubeSats. The Dove satellite family
used by Planet consists of three-unit CubeSats that are in effect
telescopes with cameras, support electronics, and attitude control.
Two Dove satellites are shown in Figure 4. Planet has extensively
used components from the smartphone industry to compress the
electronics to a very small size, thus making as much room as pos-
sible for the camera optics. Like smartphones and other consumer
electronics, Planet does not use separately boxed electronics, but
all the spacecraft electronics are integrated to a single package.
Each satellite is very low cost, and expendable; there is thus a sat-
ellite-level redundancy built into the constellation.

Figure 4.
Two Dove satellites running Linux being deployed from the Interna-
tional Space Station. Photo: NASA.

8	 IEEE A&E SYSTEMS MAGAZINE	 OCTOBER 2017

aesm-32-09-01 Page 8 PDF Created: 2017-11-20: 6:56:AM

Leppinen

The Dove satellites use COTS x86 processors in their main
computers and run Ubuntu server. 0.5 terabytes of solid-state stor-
age is available to support the imaging operations. Planet chose
Linux to be able to rapidly reconfigure the OS properties for their
mission-specific purposes. Some of the image processing is per-
formed on-board, using open source imaging processing software.
Part of the processing includes discarding images that are unusable
due to cloud cover; avoiding downlinking such images can save
downlink bandwidth. The constellations operated by Planet have
successfully provided Earth imagery for several years [24], [25].

SPACEX

SpaceX, founded by Elon Musk in 2002, operates the Falcon fam-
ily of launch vehicles and the unmanned Dragon spacecraft. Falcon
9, shown in Figure 5, is a commercially operated orbital launch
vehicle. Dragon, shown in Figure 6, is currently used to supply the
International Space Station and is planned to be man-rated in the
near future. The goal of the company, as stated by Elon Musk, is to
eventually establish human presence on Mars [27], [28].

SpaceX uses ordinary electronics parts in their flight electron-
ics, as opposed to dedicated radiation-hardened parts, since sys-
tems can be made radiation tolerant with redundancy, and COTS
components are easier to work with. The Dragon flight computer
consists of three computer units, each of which has two indepen-

Figure 5.
Falcon 9 uses Linux in its avionics. Photo: NASA.

Figure 6.
Dragon, controlled by Linux-based avionics, arriving at the ISS. Photo: NASA.

OCTOBER 2017	 IEEE A&E SYSTEMS MAGAZINE	 9

aesm-32-09-01 Page 9 PDF Created: 2017-11-20: 6:56:AM

Current Use of L inux in Spacecraft F l ight Software

dent processors. In total, the Dragon spacecraft has at least 54 dif-
ferent off-the-shelf processors, and Falcon 9 has at least 30. Ra-
diation-hardened parts are not avoided because of cost, but rather
because they often cannot match with commercial hardware in
terms of size, power consumption, performance, tools, and sup-
port. SpaceX also selected Linux and C++ to be able to tap into
the huge developer community for these environments—there
are many more Linux and C++ developers than, for example, Vx-
Works and Ada developers. SpaceX also expects that greater avail-
ability of hardware leads to greater familiarity with the system,
thus reducing bugs; flight software developers have several of the
flight computers on their desks. They are also iterating and devel-
oping new versions of the computer to be used in future missions,
and aiming to learn from experience. Developing new versions
of the computer also allows using the latest parts available in the
market. New industrial-grade parts become available much more
frequently than radiation-hardened parts [27].

SpaceX began their flight software development with a com-
bination of VxWorks for the primary computer and Linux for
running communication gateways, but moved on to use a highly
customized Linux everywhere after becoming comfortable with
the Linux scheduler and kernel real-time patch progress. Reasons
for selecting Linux included the availability of source code and
thus programmability, its enterprise-level stability, availability of
soft real-time patches, and its wide user community [26]. SpaceX
uses Linux on their primary flight computers for Dragon spacecraft
and Falcon 9 launch vehicle, and also for their test vehicles, such
as Grasshopper. Their version of Linux is based on the 3.2 kernel
with real-time patches. Only those functionalities needed for the
SpaceX implementation have been carried from the original ker-
nel—only around 10-15 percent of original code. SpaceX has also
made their own mission-specific modifications to the kernel, and
custom drivers have also been added. The kernel has been carefully
evaluated, especially focusing on the scheduler performance [29].

SpaceX started spacecraft software development with the Fal-
con series of rockets, and transitioned the avionics code to the
Dragon spacecraft. Parts of the transferred avionics code had thus
already been proved in flight. Sharing the code bases also means
bugs get fixed on all platforms. Reaction times are the main dif-
ference with a launch vehicle and an orbital spacecraft; a launch
vehicle must typically react much faster [28].

SpaceX flight software developers use a lot of standard GNU
tools such as gcc, gdb, ftrace, netfilter, and iptables. SpaceX in-
cludes extensive metrics gathering to their software, including but
not limited to performance, network utilization, and CPU load. This
information is collected and stored along with spacecraft telemetry
and software versions in use; this allows reproduction of any en-
countered situation, especially useful when analyzing failures. Met-
rics data is automatically parsed to raise alarms if software behavior
is out of ordinary. Software development processes, such as enforc-
ing coding standards, are automated where possible [28].

POTENTIAL BENEFITS AND DRAWBACKS

As mentioned before, the idea of using Linux in spacecraft on-board
computing dates back at least to 1999 to the FlightLinux project,

and some of the issues identified then are still relevant. This section
considers potential benefits and drawbacks of Linux use.

BENEFITS

The benefits of using Linux in spacecraft flight software are simi-
lar to those for embedded systems in general. Yaghmour [6] and
Hallinan [8] have identified the following benefits for using Linux
in embedded systems.

CC Support for many hardware architectures–perhaps widest
support by any OS–allows freedom in selection of the hard-
ware platform

CC The Linux code base can be relied upon due to its very wide
adoption, and availability of source code allows verifying
correctness and correcting found problems without delay

CC Support for many communication protocols and standards
make interfacing with external devices easy

CC Availability of standardized development tools for example
from the GNU project

CC Large developer community provides support and developer
recruitment pool

CC Possibility of vendor independence, open source licensing,
and low cost of adoption,

furthermore, Birrane, et al. [5] have found more specific benefits
of using Linux in spacecraft flight software:

CC Optional (soft) real-time capabilities

CC Parts of software can be developed and debugged on desktop
Linux computers and ported to flight environment with little
effort

CC Existence of huge catalogue of Linux software from various
industries that can be taken into use in the flight computer
with little effort, including data compression, file systems,
operations scheduling, data processing, security-related soft-
ware, algorithms, and scripting

CC Standards such as POSIX allow flight software to be de-
coupled by modularizing it to sets of programs or processes
that run on Linux, reducing development time and allowing
per-program updates to the system.

Many of the projects analyzed in the previous section also
noted their reasons for choosing Linux, which usually reflected the
items mentioned above.

Open-source software may sometimes be perceived as error
prone; however, since the software code is freely available, any
possibly present bugs are detected and fixed more quickly, and the
fixes can be provided back to the community. Developers may also
add useful features to the software, and make them available to
other users. Nearly all projects studied in this article considered
the availability of Linux source code beneficial to them, as they
could find problems, test modifications, and make customizations
easily [30], [31].

10	 IEEE A&E SYSTEMS MAGAZINE	 OCTOBER 2017

aesm-32-09-01 Page 10 PDF Created: 2017-11-20: 6:56:AM

Leppinen

Linux has many useful general-purpose facilities available,
such as file systems, data bus interfaces, process scheduling, and
interprocess communication. The POSIX abstractions have existed
for decades, and most POSIX compatible software can be made to
run on the embedded Linux system. Generic spacecraft software
modules–handling, for example, attitude control–targeting Linux
could be written and distributed commercially or noncommercially
across projects. As mentioned, SpaceX has reused the same soft-
ware in their launch vehicle and orbital spacecraft. Linux could
thus make it easier to produce hardware-independent satellite soft-
ware systems.

Shell scripting in Linux can substitute on-board control proce-
dures that are traditionally used to automate spacecraft operations
[1]. This approach was used for example in TacSat-1 [9].

DRAWBACKS AND MITIGATING THEM

Choosing Linux limits the choice of hardware; the processor must
have a memory management unit, and 8-bit and 16-bit processors
are mostly ruled out. The exception is μClinux, which can run on
16-bit processors without memory management units [6]. Howev-
er, this is becoming a nonissue: for example, many mobile phones
use 32-bit and 64-bit processors with very low power consump-
tion. Low-power 32-bit processors can be used in place of 8-bit
and 16-bit ones.

Birrane, et al. [5] noted problems in the package dependencies
of many Linux programs they wanted to port to their systems. The
programs were dependent on underlying packages, which contained
much more features and code than what the actually needed program
would use, thus leading to code bloat. When using nontailored Linux
distributions, much of the available software might be unused in the
actual application. If this extra software is flown, it either must be
verified and validated along with the actually used software, or it
must be verified that the extra software is never used during flight.
While possibly time consuming, it is possible to remove the addi-
tional quality assurance burden by tailoring the custom distribution
to completely remove any unused extra software [6]. As processing
hardware increases in capability, the performance cost of using a
general-purpose OS may become nearly negligible. The existence
of “extra” software is not a performance problem if the system has
enough spare memory and processing capability; it may be less ex-
pensive to pick more capable hardware than to carefully hand-tailor
the distributions. On the other hand, it is also possible to customize
Linux to run on very little resources [9].

A major drawback is that Linux has not been designed to be
an RTOS. However, additions exist to make Linux more real-time
friendly. In some cases, the number of hard real-time constraints
can be reduced with design changes; and for those hard real-time
constraints that remain, one option is to use a dedicated controller
to handle them, or to use some real-time Linux variant. To han-
dle the hard real-time problem, projects such as RTLinux, RTAI,
xLuna, and μITRON have used a similar architectural solution of
using a separate microkernel below the Linux partition, which runs
Linux as the idle task of the microkernel, thus Linux is executing
when no other higher priority tasks (presumably with hard real-
time constraints) are blocking it [7].

Craveiro, et al. [7] and Rufino, et al. [32] describe the AIR
project, which has studied ARINC 653 standard compatible
methods of using Linux kernel in safety-critical hard real-time
systems. Their method is based on time-space partitioning. A
simplified version of the AIR architecture is shown in Figure 7.
In this scenario, a microkernel running on the on-board computer
executes partitions sequentially, and each partition contains its
own data and executable code. One partition may then contain
Linux kernel, while other partitions run ordinary RTOS kernels.
The scheduling of partitions is strictly deterministic: each parti-
tion is cyclically allocated a fixed time slice. This determinism
allows the development of hard real-time systems, while ben-
efiting from the availability of Linux: Craveiro, et al. especially
note that this allows using much of the software developed for
Linux without tediously porting it to an RTOS, and additionally
the scripting capability of Linux is made available, without spe-
cifically porting an interpreter. However, it must be made certain
that the use of Linux does not affect the consistency and safety
of the time-space partitioning. The authors also note that the AIR
architecture ensures a fixed amount of processing time for the
Linux partition and real-time partitions during each cycle, while
earlier implementations that run Linux as the idle task may block
Linux applications indefinitely if the higher priority tasks are un-
der heavy load [7].

DISCUSSION

While early use of Linux in space was experimental, SpaceX and
Planet have already successfully used it in commercial missions.
They are possibly the most influential space industry entities to
have declared using Linux in their avionics. Their success will
likely influence the rate of Linux adoption elsewhere in the indus-

Figure 7.
Linux kernel and time-space partitioning. Adapted from [7].

OCTOBER 2017	 IEEE A&E SYSTEMS MAGAZINE	 11

aesm-32-09-01 Page 11 PDF Created: 2017-11-20: 6:56:AM

Current Use of L inux in Spacecraft F l ight Software

try. It seems likely that use of Linux in spacecraft flight software
will continue to grow, driven by the following factors:

1.	 Increasing complexity of demands placed on the flight soft-
ware requires reuse of existing software modules, tools, and
processes.

2.	 Computing power continues to become cheaper and is requir-
ing less power, reducing the need for detailed optimization of
software.

3.	 Skilled labor familiar with Linux-based mobile development is
available more readily than RTOS developers

However, the hard real-time suitability of Linux still remains
questionable; while we have described some possible solutions,
there is no de facto standard way of making Linux hard real-time
compatible. However, SpaceX has demonstrated with their Falcon
9 rocket that Linux can be used very well in hard real-time systems.
Linux will not be the solution for all systems; some are still best
written at low level without OS. Bringing Linux to the embedded
platform allows utilizing the huge catalogue of Linux-compatible
software developed during the past decades. This benefit must be
weighed with the real-time considerations.

If Linux is to be used, hardware needs to be capable of running
it. COTS hardware, due to its prevalent use across all industries,
evolves much faster than the so-called space-grade or radiation-
hardened hardware. Consumer electronics win in all performance,
power consumption, and size categories; robustness, durability, and
radiation tolerance is where “traditional” space hardware stands
out. However, redundancy can be used to build robust systems
with off-the-shelf electronics by duplicating the hardware compo-
nents, or in case of Planet, by duplicating the satellites themselves.

Using Linux in space does not necessarily differ much from
many terrestrial applications, and much “terrestrial” software and
utilities can be reused for space applications. Many problems en-
countered during development may already have been solved, and
the solution may be available as open source.

The ease of deploying Linux may be deceptive: it may be rela-
tively easy to get the Linux kernel to boot on the target platform
and some applications running, but deeply understanding the ker-
nel well enough to use Linux in safety-critical software is a much
bigger effort. Linux is complex, and systems built on Linux will be
complex, and thus hard to test. Quality assurance remains impor-
tant in preventing even simple problems such as the LightSail-1
disk overflow problem already discussed. Some systems may be
quick to develop with Linux, but very hard to test; on the other
hand, the same systems could be written from ground up with the
same effort, and very easily tested. The difficulty of verifying and
validating Linux-based systems is probably the reason for its cur-
rent nonadoption in traditional space industry avionics.

CONCLUSIONS

This article discussed the use of Linux in spacecraft. Several cases
found in literature were presented and studied.

It was found that Linux has several benefits for spacecraft
software development, including availability of source code and

development tools, large user community and pool of develop-
ers, deployment across several industries thus leading to off-the-
shelf availability of many utilities and software, and support for
many types of hardware. Platform-independent, Linux-targeted
software could even be developed and used across various mis-
sions.

However, before Linux is to be used, questions that need to
be considered include limiting hardware selection mostly to 32-bit
and 64-bit architectures, uncertain and unstandardized hard real-
time capabilities, and the possible presence of unused software
modules that only consume resources without additional value.

It is likely that the use of Linux in all kinds of spacecraft will
continue to grow. SpaceX and Planet have already commercially
proven that Linux can be used equally well in all categories of
spacecraft: launch vehicles, CubeSats, and, in the future, manned
spacecraft. Thus Linux software could be traded between space-
craft, and everything “terrestrial” developed for Linux can also be
taken into space with very little effort. The popularity of Linux
is possibly one of the greatest reasons why it will continue to be
taken to space.

REFERENCES

[1]	 Eickhoff, J. Onboard Computers, Onboard Software and Satellite Op-
erations – An Introduction. Heidelberg: Springer-Verlag, 2012.

[2]	 Anthony, S. International Space Station switches from Windows to
Linux, for improved reliability. ExtremeTech, May 9, 2013. [Online].
Available: http://www.extremetech.com/extreme/155392-international-
space-station-switches-from-windows-to-linux-for-improved-reliability

[3]	 Bouwmeester, J., and Guo, J. Survey of worldwide pico- and nanosat-
ellite missions, distributions and subsystem technology. Acta Astro-
nautica, Vol. 67, 78 (2010), 854.

[4]	 Leppinen, H., Kestilä, A., Pihajoki, P., Jokelainen, J., and Haunia, T.
On-board data handling for ambitious nanosatellite missions using au-
tomotive-grade lockstep microcontrollers. In Small Satellites Systems
and Services - The 4S Symposium 2014, May 2014.

[5]	 Birrane, E., Bechtold, K., Krupiarz, C., Harris, A., Mick, A., and Wil-
liams, S. Linux and the spacecraft flight software environment. In
Proceedings of the AIAA Small Satellite Conference, SSC07-XII-10,
2007.

[6]	 Yaghmour, K., Masters, J., Ben-Yossef, G., and Gerum, P. Building
Embedded Linux Systems (2nd ed). Sebastopol, CA: O'Reilly, 2008.

[7]	 Craveiro, J., Rufino, J., Almeida, C., Covelo, R., and Venda, P. Em-
bedded Linux in a partitioned architecture for aerospace applications.
In 2009 IEEE/ACS International Conference on Computer Systems
and Applications, May 2009, 132–138. [Online]. Available: http://
dx.doi.org/10.1109/AICCSA.2009.5069315

[8]	 Hallinan, C. Embedded Linux Primer (2nd ed). Upper Saddle River,
NJ: Prentice Hall, 2011.

[9]	 Huffine, C. Linux on a small satellite. Linux Journal (Mar. 1, 2005).
[Online]. Available: http://www.linuxjournal.com/article/7767

[10]	 Kestilä, A., Tikka, T., Peitso, P., Rantanen, J., Näsilä, A., Nordling, K.,
et al. Aalto-1 nanosatellite - Technical description and mission objec-
tives. Geoscientific Instrumentation, Methods and Data Systems, Vol.
2, 1 (2013), 121–130. [Online]. Available: http://www.geosci-instrum-
method-data-syst.net/2/121/2013/

12	 IEEE A&E SYSTEMS MAGAZINE	 OCTOBER 2017

aesm-32-09-01 Page 12 PDF Created: 2017-11-20: 6:56:AM

Leppinen

[11]	 Long, M., Lorenz, A., Rodgers, G., Tapio, E., Tran, G., Jackson, K. et
al. A CubeSat derived design for a unique academic research mission
in earthquake signature detection. In Proceedings of the AIAA Small
Satellite Conference, SSC02-IX-6, 2002.

[12]	 Flagg, S., Bleier, T., Dunson, C., Doering, J., DeMartini, L., Clarke, P.
et al. Using nanosats as a proof of concept for space science missions:
QuakeSat as an operational example. In Proceedings of the AIAA
Small Satellite Conference, SSC04-IX-4, 2004.

[13]	 Surratt, M., Loomis, H. H., Ross, A. A., and Duren, R. Challenges
of remote FPGA configuration for space applications. In 2005 IEEE
Aerospace Conference, Mar. 2005.

[14]	 Schmidt, M., and Schilling, K. An extensible on-board data han-
dling software platform for pico satellites. Acta Astronautica, Vol. 63
(2008), 1299–1304. [Online]. Available: http://dx.doi.org/10.1016/j.
actaastro.2008.05.017

[15]	 Schilling, K. Networked distributed pico-satellite systems for Earth
observation and telecommunication applications. In IFAC Workshop
on Aerospace Guidance, Navigation and Flight Control Systems,
2011.

[16]	 Ramesh, B., Bretschneider, T., and McLoughlin, I. Embedded Linux
platform for a fault tolerant space based parallel computer. In Pro-
ceedings of the 2004 RealTime Linux Workshop, 2004.

[17]	 Chien, S., Doubleday, J., Thompson, D., Wagstaff, K., Bellardo, J.,
Francis, C. et al. Onboard autonomy on the intelligent payload experi-
ment (IPEX) Cubesat mission: A pathfinder for the proposed HyspIRI
mission intelligent payload module. In 12th International Symposium
in Artificial Intelligence, Robotics and Automation in Space, 2014.

[18]	 Doubleday, J., Chien, S., Norton, C., Wagstaff, K., Thompson, D. R.,
Bellardo, J. et al. Autonomy for remote sensing – Experiences from
the IPEX CubeSat. In 2015 IEEE International Geoscience and Re-
mote Sensing Symposium (IGARSS), July 2015, 5308–5311. [Online].
Available: http://dx.doi.org/10.1109/IGARSS.2015.7327033

[19]	 Kenyon, S., Bridges, C., Liddle, D., Dyer, R., Parsons, J., Feltham,
D. et al. STRaND-1: Use of a $500 smartphone as the central avion-
ics of a nanosatellite. In 62nd International Astronautical Congress
2011 (IAC 2011), Oct. 2011. [Online]. Available: http://epubs.surrey.
ac.uk/26828/

[20]	 Bridges, C., Yeomans, B., Lacopino, C., Frame, T. E., Schofield,
A., Kenyon, S. et al. Smartphone qualification and Linux-based
tools for CubeSat computing payloads. In Aerospace Conference,

2013, Mar. 2013. [Online]. Available: http://dx.doi.org/10.1109/
AERO.2013.6497349

[21]	 Manyak, G., and Bellardo, J. M. Polysat's next generation avionics de-
sign. In 2011 IEEE Fourth International Conference on Space Mission
Challenges for Information Technology (SMC-IT), Aug. 2011, 69–76.
[Online]. Available: http://dx.doi.org/10.1109/SMC-IT.2011.13

[22]	 Ridenoure, R., Munakata, R., Diaz, A., Wong, S., Plante, B., Stetson,
D. et al. LightSail program status: One down, one to go. In Proceed-
ings of the AIAA Small Satellite Conference, SSC15-V-3, 2015.

[23]	 Salas, A., Attai, W., Oyadomari, K., Priscal, C., Schimmin, R., Gazul-
la, O. et al. PhoneSat in-flight experience results. In Small Satellites
Systems and Services - The 4S Symposium 2014, May 2014.

[24]	 Boshuizen, C., Mason, J., Klupar, P., and Spanhake, S. Results from
the Planet Labs Flock constellation. In Proceedings of the AIAA/USU
Conference on Small Satellites, SSC14-I-1, 2014.

[25]	 Everard, B. Planet Labs: Putting Linux in space. Linux Voice, 8 (June
2015).

[26]	 Gruen, J. Linux in space. Presentation, 2012. [Online]. Available:
https://events.linuxfoundation.org/images/stories/pdf/lcna_co2012_
gruen.pdf

[27]	 Svitak, A. Dragon's “Radiation-Tolerant” design, Nov. 19, 2012.
[Online]. Available: http://aviationweek.com/blog/dragons-radiation-
tolerant-design

[28]	 Edge, J. ELC: SpaceX lessons learned, Mar. 6, 2013. [Online]. Avail-
able: https://lwn.net/Articles/540368/

[29]	 Keller, J. Introduction to SpaceX. Presentation, 2014. [Online]. Avail-
able: http://retis.sssup.it/rts-like/program.html#spacex-keller

[30]	 Stakem, P. Flight Linux: A viable option for spacecraft embedded
computers. In Earth Science Technology Conference, Pasadena, CA,
June 11–13.

[31]	 Wooster, P., Boswell, D., Stakem, P., and Cowan-Sharp, J. Open
source software for small satellites. In Proceedings of the AIAA Small
Satellite Conference, SSC07- XII-3, 2007.

[32]	 Rufino, J., Craveiro, J., and Verissimo, P. Building a time- and space-
partitioned architecture for the next generation of space vehicle
avionics. In Software Technologies for Embedded and Ubiquitous
Systems: 8th IFIP WG 10.2 International Workshop, SEUS 2010,
Waidhofen/Ybbs, Austria, October 13-15, 2010. Berlin: Springer Ber-
lin Heidelberg, 2010, pp. 179-190. [Online]. Available: http://dx.doi.
org/10.1007/978-3-642-16256-5_18

OCTOBER 2017	 IEEE A&E SYSTEMS MAGAZINE	 13

aesm-32-09-01 Page 13 PDF Created: 2017-11-20: 6:56:AM

