
INTRODUCTION

Spacecraft on-board computers are responsible for controlling the 
spacecraft platform, payloads, or other on-board devices. Their 
mission-specific software allows communication with ground or 
other on-board computers. Traditionally, on-board software has 
been written close to the hardware in assembly language, Ada, C, 
or C++, with or without a real-time operating system (RTOS) [1].

As the spacecraft computer hardware capabilities are increas-
ing, spacecraft software is becoming larger and more complex, 
handling more tasks from payload data processing to landing a first 
stage of a launch vehicle on an ocean-going barge. Spacecraft will 
still continue to include very small embedded systems that can be 
developed without operating systems (OS), but some systems will 
also have large software bases, requiring efficient software devel-
opment processes and reuse of existing software modules.

The last decade has seen increasing use of Linux in spacecraft 
on-board software. This article presents common features of space-
craft on-board computers and software and discusses potential 
benefits and drawbacks of on-board Linux use. The focus of this 
article is on spacecraft on-board avionics software, that is, space-
craft-controlling code that flies into orbit with the spacecraft. Other 
types of computers are not included in this analysis; for example, 
many laptops on the International Space Station run Linux [2].

BACKGROUND

SPACECRAFT ON-BOARD COMPUTERS

Spacecraft on-board computers are responsible for handling tele-
commands sent by ground, providing telemetry to the ground, pro-
cessing on-board data, and controlling the spacecraft platform and 
payload devices. A spacecraft may have one or several on-board 
computers that handle different tasks. Similar to other embedded 
computers, a spacecraft on-board computer usually has at least a 
processor, random access memory (RAM), read-only memory for 
boot code, mass memory, data bus interfaces, and a power supply. 
Perhaps unlike many other embedded computers, some parts of 

the on-board computer may be made redundant to circumvent any 
possible hardware malfunctions.

According to Eickhoff [1], radiation-hardened SPARC, Pow-
erPC, MIPS, and Intel x86 architectures have been popular in 
traditional industrial and governmental space applications. Uni-
versity small satellite missions have tended to use a larger variety 
of processors, especially from the ARM family. According to a 
2010 analysis [3], low-power microcontrollers such as the Mi-
crochip PIC series and the Texas Instruments MSP series have 
been popular in CubeSats before 2010, while ARM microcon-
trollers were becoming more popular due to their greater process-
ing power. Some inexpensive commercial off-the-shelf (COTS) 
microcontrollers, such as the Texas Instruments Hercules family, 
have safety-critical features previously usually seen in expensive 
high-reliability processors, making them attractive for space ap-
plications [4].

SPACECRAFT ON-BOARD SOFTWARE

The on-board software running on the on-board computer is re-
sponsible for utilizing the computer's hardware resources and in-
terfaces to achieve its specified mission, such as controlling the 
spacecraft or some platform or payload instrument. On-board soft-
ware must typically provide at least a telecommand and telemetry 
interface that is utilized by ground control or some other on-board 
software running on another on-board computer. On-board soft-
ware can be roughly divided into three parts: hardware driver soft-
ware for providing abstractions of the underlying hardware, OS for 
providing task and resource management, and application software 
for providing the mission-specific functionality. This division is 
illustrated in Figure 1. Some simple on-board software may not 
need an OS at all.

The hardware driver software is usually provided by the hard-
ware manufacturer as a software abstraction of their hardware, and 
various users of the same hardware in different industrial domains 
may use the same driver software.

The OS is an optional component, and in many cases it has not 
been used at all. In some cases, the OS itself may provide the ab-
straction of hardware instead of separate hardware driver software. 
Historically, much of spacecraft flight software was written from 
ground up using assembly language. Ada programming language, 
which has long had advanced tasking features, has been used to 
build on-board software systems running several threads of execu-
tion. However, recently the use of Ada has been reduced in favor of 
using real-time OS along with C and C++ programming languages 
due to the larger availability of developers for these languages. 
When most of the software has been written from scratch, the end 
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result has tended to be very tightly coupled, and not well suited for 
later use in other projects [5].

When OS have been used in spacecraft, common selections 
have included VxWorks and RTEMS. Both VxWorks and RTEMS 
are RTOSs designed for embedded systems and commonly used in 
safety-critical hard real-time applications [1]. University small sat-
ellite missions have also used other general purpose RTOSs, such 
as FreeRTOS [4].

EMBEDDED LINUX

The term Linux strictly refers to the OS kernel originally devel-
oped by Linus Torvalds since 1991. Linux is used in embedded 
systems because of quality and availability of code, wide hardware 
support, implementations of communication protocols and appli-
cation programming interfaces, available development tools, fa-
vorable licensing conditions, vendor independence, and cost. The 
Linux kernel can be run in various Linux systems from very small 
embedded computers to supercomputer clusters. Each system has a 
different purpose and different software packages and applications.

Linux has been ported to many architectures: as of this writ-
ing, the Linux kernel readme file lists at least 22 supported ar-
chitectures. According to Yaghmour [6], architectures mostly used 

in embedded Linux applications include ARM, AVR32, Intel x86, 
M32R, MIPS, Motorola 68000, PowerPC, and SuperH. Linux is 
also available for the LEON processors commonly used in the 
European space industry. Thus Linux is available for most of the 
architectures commonly used in space applications mentioned in 
the previous section.

A generic on-board software architecture using Linux is de-
picted in Figure 2. Linux provides OS facilities such as virtual 
memory, processes, communication sockets, and files. The kernel 
is responsible for driving the devices, managing input-output ac-
cess, scheduling processes, enforcing memory sharing, and han-
dling signals. The kernel is typically started by a bootloader, and 
is never stopped while the embedded device is running. The Linux 
kernel has support for many data buses and communication proto-
cols useful for spacecraft developers, including at least CAN bus, 
Modbus, SPI, I2C, and serial port [6]. CAN is one of the on-board 
data buses already used in the space industry, and is directly sup-
ported by Linux [1].

Many commercial embedded Linux distributions exist for vari-
ous platforms, but embedded developers may also build their cus-
tom distributions using the kernel source code. Buildroot is one 
commonly used tool for this purpose. uClibc, a lightweight C li-
brary, is often used to replace the standard GNU C library used 

Figure 1.
Generic on-board software architecture.

Figure 2.
Generic on-board software architecture with Linux kernel. Adapted from [6].
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in desktop applications. BusyBox is often used to include many 
UNIX-like tools in embedded applications where only limited re-
sources are available [6]–[8].

μCLinux is a version of Linux developed for processors that 
lack a memory management unit, but provides the same basic 
functionalities as Linux [6].

Linux has been designed as a general purpose OS and thus does 
not directly support hard real-time applications [6]. However, solu-
tions have been designed to address this limitation and we discuss 
these in the next section about advantages and drawbacks.

LINUX IN ORBIT

This section reviews Linux use in various spacecraft. The analysis 
is limited to a selection of missions that have academically pub-
lished their Linux use. The selection includes educational, govern-
mental, and commercial missions. More than a hundred spacecraft, 
many by Planet and SpaceX, have flown Linux. The discussed 
missions are summarized in Table 1.

Possibly the first study of using Linux in spacecraft dates to the 
NASA FlightLinux project that ran from 1999 to 2002. The proj-
ect aimed to provide an on-orbit demonstration of the Linux OS; 
the demonstration target was the UoSat-12 satellite operated by 
Surrey Satellite Technology Ltd. The rationale for this demonstra-
tion was to try extending the COTS philosophy used in hardware 
to the software domain by using an off-the-shelf OS with many 
available software packages, that is, Linux. The kernel and a de-
compression program were fitted within a space of approximately 
400 kB, and the system only had 4 MB of RAM available. Linux 
provided networking and filesystem facilities and supported high-
level programming languages, such as Java. The kernel setup rou-
tine was modified to support the UoSat-12 hardware. The planned 
UoSat-12 test was very primitive, such as printing “Hello World!” 
to a serial port [30].

Many CubeSat missions, including the Aalto-1 mission op-
erated by Aalto University [10], have used Linux in their flight 
computers. Aalto-1 uses an AT91RM9200-based computer with a 
customized 3.4 kernel prepared using Buildroot. Aalto-1, shown 
in Figure 3, was launched on June 23, 2017. As the mission began 
recently and is still ongoing, it is not analysed in this article.

A microsatellite example is TacSat-1, which used Linux 
in its Copperfield-2 payload in PowerPC MPC823, PowerPC 
PowerQuicc II 8260, and StrongArm SA1110 computers. Linux 
was considered possible since there were no hard real-time 
requirements for the payload software, and thus no real-time 
adaptations of Linux were used. The payload computers, com-
municating via TCP/IP, processed sensor data and provided 
payload data storage and handling infrastructure. Linux also 
provided scripting engines as an additional benefit; Perl and Py-
thon were evaluated, but shell scripting was decided to be used. 
Many payload functionalities were implemented as scripts, and 
the data flow between software was handled via standard in-
put and output. This allowed quick interfacing with existing, 
off-the-shelf Linux software. Most of the custom software de-
veloped for TacSat-1 handled conversion between TCP/IP and 
OX.25 protocols. Development was possible on x86 PCs, while 

the target itself had PowerPC architecture. However, TacSat-1 
was never launched [9].

The following subsections discuss some of the missions in 
Table 1.

QUAKESAT

One of the earliest CubeSats to fly Linux was QuakeSat, which 
was a 3U CubeSat built at Stanford University for QuakeFinder 
LLC. It aimed to study extremely low-frequency magnetic signals 
in order to possibly predict earthquake activity. QuakeSat also 
aimed to demonstrate the usefulness of COTS electronics and the 
CubeSat standard for the development of low-cost space missions.

QuakeSat's command and data handling system operated with 
timed commands to perform payload data gathering when histori-
cally active earthquake areas were within the range of the instru-
ment. QuakeSat had no digital on-board mission data processing. 
All electronics were embedded on a single circuit board. Diamond 
Systems Prometheus PC-104 processor board was used as the 
command and data handling system hardware, and a version of 
Linux provided by Diamond Systems was used as the OS. Linux 
was chosen since many of the required device drivers were already 
available. The processor was clocked down to 66 MHz, and the 
system had 32 MB of RAM and a 192 MB Flash disk for storage. 
In addition to Linux, the flight software consisted of some 10,000 
lines of code, some of which included already existing AX.25 and 
modem drivers. Flight software features included communication 
with an on-board UHF modem, AX.25 libraries, other radio utili-
ties, payload data collection and compression, data downlink, and 
command execution. Bzip2 compression was used for the payload 
data.

The satellite had only passive magnetic attitude control. The 
QuakeSat command and data handling system performed time-
based operations, with operation times selected on the predicted 
position of the satellite. The command and data handling system 
was able to store commands and data for one day. Schedule files 
were uploaded to the satellite, and payload data files were com-
pressed and downlinked from the satellite. The satellite operator 
was also able to query real-time telemetry from the satellite. The 
operator also needed to synchronize the satellite clock every three 
days. The satellite performed well in orbit, and collected useful 
scientific data [11], [12].

UWE-1 AND UWE-2

UWE-1 and UWE-2 were 1 kg CubeSats built by the University of 
Würzburg, and they were launched in 2005 and 2009, respectively. 
The UWE satellites aimed to test various small satellite technolo-
gies, including the use of internet protocols in space. Both used a 
similar on-board computer, which included a 16-bit Hitachi H8S 
2764 microprocessor. The computer had 8 MB of RAM and 4 MB 
of nonvolatile flash memory. The 16-bit processor did not have a 
memory management unit, requiring the use of μClinux. The com-
puter consumed only 300 mW during nominal operations; the low 
power consumption was one of the reasons to select the micro-
controller, as it allowed more power for other experiments. The 
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processor also had the required interfaces, such as I2C and serial 
port, to communicate with other hardware on the satellite. μClinux 
was selected because of the Linux portability and availability of 
software; only the application-specific software modules needed to 
be developed. Linux also had the internet protocol stack available 
for the technology demonstrations.

Although the UWE-1 on-board software performed well, it 
was rewritten for UWE-2 in order to be more extensible. Software 
was written in C due to its good integration with Linux, and due 
to the availability of C cross-compiler for the selected processor. 
The application software was realized as several Linux programs 
running in parallel, including programs for system control, radio 
control, battery control, housekeeping, logging, and sensors. The 
programs communicated through the Linux interprocess commu-
nication facilities.

UWE-1 completed its demonstration mission within a few 
weeks after launch, and UWE-2 was also operated successfully 
[14], [15].

Table 1. 

List of Analysed Spacecraft

Name Operator Launch Date Details Sources

TacSat-1 Naval Research 
Laboratory

Not launched PowerPC MPC823 and 
PowerQuicc II 8260, 
StrongArm SA1110

[9]

Aalto-1 Aalto University 2017 AT91RM9200-based embedded 
computer, Linux 3.4 prepared 
with Buildroot

[10]

QuakeSat QuakeFinder LLC 2003 Diamond Systems Prometheus 
PC/104 x86 CPU module with 
Red Hat Linux

[11] [12]

MidSTAR-1 United States Naval 
Academy

2007 ARM Linux on a payload 
controller

[13]

UWE-11, UWE-
22

University of 
Würzburg

12005, 22009 Hitachi H8S 2674 16-bit 
microprocessor, μClinux

[14] [15]

X-Sat Nanyang 
Technological 
University

2011 Payload controller: Linux on 
several StrongArm SA1110 
processors

[16]

IPEX Cal Poly San Luis 
Obispo, JPL

2013 400 MHz Atmel ARM9 CPU 
based computer, Linux 2.6.30

[17] [18]

STRaND-1 Surrey Space Centre 2013 Digi-Wi9C with μClinux and 
Google Nexus One with 
Android

[19] [20]

LightSail-1 The Planetary 
Society

2015 Tyvak Intrepid v6 single-board 
computer

[21] [22]

PhoneSat 
satellites

NASA Several since 2013 Google Nexus One and Nexus 
S with Android 2.2

[23]

Dove satellites Planet Several since 2013 Low-power COTS x86 
processors, Ubuntu server

[24] [25]

Falcon 9, 
Dragon

SpaceX Several since 2010 Multiple COTS computers, 
custom Linux 3.2 with real-
time patches

[26] [27] [28] 
[29]

Figure 3.
Aalto-1 is one of the CubeSats using Linux. Photo: Aalto University.
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IPEX

IPEX was a 1 kg CubeSat developed by Cal Poly San Luis Obispo 
and Jet Propulsion Laboratory (JPL) that aimed to validate tech-
nologies for on-board instrument processing and autonomous op-
erations. The main computer had a 400 MHz Atmel ARM9 proces-
sor with 128 MB RAM, a few megabytes of radiation resistant 
PRAM, 512 MB NAND Flash, and a 16 GB microSD card. Linux 
2.6.30 was used. The satellite additionally carried a Gumstix Earth 
Storm single-board computer with an 800 MHz ARM processor, 
512 MB RAM, 512 MB NAND Flash, and also running Linux. The 
satellite had several cameras as payload, and had high processing 
power requirements. The two computers were linked with a serial 
link. An on-board software, CASPER, managed the spacecraft re-
sources autonomously.

The flight software of IPEX was based on extending and adapt-
ing Linux facilities. The System V init process was used to start 
and restart main components of the flight software. Operations 
were based on uploading observation and ground contact sched-
ules. Uplink and downlink bandwidth was limited, which made 
operations harder. The developers noted that more software could 
have been preloaded on the computer, since nonvolatile storage 
was abundant, while it was very hard to upload large pieces of 
software during the mission. IPEX computer used reboots to clear 
problems possibly caused by radiation, which grew more frequent 
as the mission progressed. The satellite stopped communicating in 
early 2015, but its mission of demonstrating on-board autonomy 
was successfully completed [17], [18].

STRAND-1 AND PHONESAT SATELLITES

The Android OS is based on Linux, and at least two projects have 
used Android smartphones to build satellite on-board computers. 
Smartphones contain many technologies useful for small satellites, 
such as low-power yet capable processors, gyroscopes, accelerom-
eters, cameras, and communication interfaces.

STRaND-1 was a CubeSat built by Surrey Space Centre and 
Surrey Satellite Technology Ltd that aimed to explore new ways 
of including smartphone technologies to CubeSat platforms. While 
the satellite main computer ran FreeRTOS, STRaND-1 used in its 
payload μClinux in a Digi-Wi9C single board computer and An-
droid on a Google Nexus One smartphone. The satellite main com-
puter communicated with the Digi-Wi9C via I2C, while Digi-Wi9C 
communicated with the smartphone via USB and Wi-Fi using for 
example the telnet protocol. One of the aims of the mission was 
to test transferring control of the satellite to the smartphone and 
its Android applications. The satellite was launched in early 2013, 
and experienced initial communication problems but was recov-
ered and continued its mission in summer 2013 [19], [20].

The NASA PhoneSat technology demonstration project aimed 
to demonstrate building very low-cost nanosatellites using smart-
phones and other consumer technology. The project has launched 
several smartphone-based nanosatellites that used Google Nexus 
One and Nexus-S smartphones as on-board computers. Several 
PhoneSats have been launched since 2013, and the smartphone 
cameras have successfully taken pictures of the Earth [23].

LIGHTSAIL-1

LightSail-1 was a CubeSat developed by the Planetary Society and 
launched in 2015. Its purpose was to test the deployment of a solar 
sail in space. The LightSail-1 avionics consisted of two processor 
boards with different tasks. The main board handled the spacecraft 
command, control, data collection, and telemetry, and the payload 
interface board focused on attitude control and managing the solar 
sail payload deployment. The main board was a Tyvak Intrepid v6 
single-board computer and used Linux, and the payload interface 
board used a 16-bit PIC33 processor. Flight software was written 
in C for both the Linux-running Intrepid and the PIC processor. 
While the Linux system could run several processes and support 
many libraries and interfaces, the PIC processor ran a simple 5 Hz 
control loop for attitude control and solar sail deployment.

During the mission, a problem in the Linux system was discov-
ered that caused a temporary loss of control. A comma-separated 
values file grew out of bounds due to a bug, causing the system to 
halt; fortunately, a radiation-induced single-event effect caused the 
main computer to reboot, temporarily fixing the problem, and al-
lowing a bug fix to be applied in orbit. After the bug fix, the solar 
sail deployment was successfully performed just in time before the 
low-flying satellite deorbited [21], [22].

DOVE SATELLITES

Planet, formerly Planet Labs, aims to provide high-resolution im-
agery of the whole Earth at high refresh rates by using constella-
tions of tens to hundreds of CubeSats. The Dove satellite family 
used by Planet consists of three-unit CubeSats that are in effect 
telescopes with cameras, support electronics, and attitude control. 
Two Dove satellites are shown in Figure 4. Planet has extensively 
used components from the smartphone industry to compress the 
electronics to a very small size, thus making as much room as pos-
sible for the camera optics. Like smartphones and other consumer 
electronics, Planet does not use separately boxed electronics, but 
all the spacecraft electronics are integrated to a single package. 
Each satellite is very low cost, and expendable; there is thus a sat-
ellite-level redundancy built into the constellation.

Figure 4.
Two Dove satellites running Linux being deployed from the Interna-
tional Space Station. Photo: NASA.
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The Dove satellites use COTS x86 processors in their main 
computers and run Ubuntu server. 0.5 terabytes of solid-state stor-
age is available to support the imaging operations. Planet chose 
Linux to be able to rapidly reconfigure the OS properties for their 
mission-specific purposes. Some of the image processing is per-
formed on-board, using open source imaging processing software. 
Part of the processing includes discarding images that are unusable 
due to cloud cover; avoiding downlinking such images can save 
downlink bandwidth. The constellations operated by Planet have 
successfully provided Earth imagery for several years [24], [25].

SPACEX

SpaceX, founded by Elon Musk in 2002, operates the Falcon fam-
ily of launch vehicles and the unmanned Dragon spacecraft. Falcon 
9, shown in Figure 5, is a commercially operated orbital launch 
vehicle. Dragon, shown in Figure 6, is currently used to supply the 
International Space Station and is planned to be man-rated in the 
near future. The goal of the company, as stated by Elon Musk, is to 
eventually establish human presence on Mars [27], [28].

SpaceX uses ordinary electronics parts in their flight electron-
ics, as opposed to dedicated radiation-hardened parts, since sys-
tems can be made radiation tolerant with redundancy, and COTS 
components are easier to work with. The Dragon flight computer 
consists of three computer units, each of which has two indepen-

Figure 5.
Falcon 9 uses Linux in its avionics. Photo: NASA.

Figure 6.
Dragon, controlled by Linux-based avionics, arriving at the ISS. Photo: NASA.
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dent processors. In total, the Dragon spacecraft has at least 54 dif-
ferent off-the-shelf processors, and Falcon 9 has at least 30. Ra-
diation-hardened parts are not avoided because of cost, but rather 
because they often cannot match with commercial hardware in 
terms of size, power consumption, performance, tools, and sup-
port. SpaceX also selected Linux and C++ to be able to tap into 
the huge developer community for these environments—there 
are many more Linux and C++ developers than, for example, Vx-
Works and Ada developers. SpaceX also expects that greater avail-
ability of hardware leads to greater familiarity with the system, 
thus reducing bugs; flight software developers have several of the 
flight computers on their desks. They are also iterating and devel-
oping new versions of the computer to be used in future missions, 
and aiming to learn from experience. Developing new versions 
of the computer also allows using the latest parts available in the 
market. New industrial-grade parts become available much more 
frequently than radiation-hardened parts [27].

SpaceX began their flight software development with a com-
bination of VxWorks for the primary computer and Linux for 
running communication gateways, but moved on to use a highly 
customized Linux everywhere after becoming comfortable with 
the Linux scheduler and kernel real-time patch progress. Reasons 
for selecting Linux included the availability of source code and 
thus programmability, its enterprise-level stability, availability of 
soft real-time patches, and its wide user community [26]. SpaceX 
uses Linux on their primary flight computers for Dragon spacecraft 
and Falcon 9 launch vehicle, and also for their test vehicles, such 
as Grasshopper. Their version of Linux is based on the 3.2 kernel 
with real-time patches. Only those functionalities needed for the 
SpaceX implementation have been carried from the original ker-
nel—only around 10-15 percent of original code. SpaceX has also 
made their own mission-specific modifications to the kernel, and 
custom drivers have also been added. The kernel has been carefully 
evaluated, especially focusing on the scheduler performance [29].

SpaceX started spacecraft software development with the Fal-
con series of rockets, and transitioned the avionics code to the 
Dragon spacecraft. Parts of the transferred avionics code had thus 
already been proved in flight. Sharing the code bases also means 
bugs get fixed on all platforms. Reaction times are the main dif-
ference with a launch vehicle and an orbital spacecraft; a launch 
vehicle must typically react much faster [28].

SpaceX flight software developers use a lot of standard GNU 
tools such as gcc, gdb, ftrace, netfilter, and iptables. SpaceX in-
cludes extensive metrics gathering to their software, including but 
not limited to performance, network utilization, and CPU load. This 
information is collected and stored along with spacecraft telemetry 
and software versions in use; this allows reproduction of any en-
countered situation, especially useful when analyzing failures. Met-
rics data is automatically parsed to raise alarms if software behavior 
is out of ordinary. Software development processes, such as enforc-
ing coding standards, are automated where possible [28].

POTENTIAL BENEFITS AND DRAWBACKS

As mentioned before, the idea of using Linux in spacecraft on-board 
computing dates back at least to 1999 to the FlightLinux project, 

and some of the issues identified then are still relevant. This section 
considers potential benefits and drawbacks of Linux use.

BENEFITS

The benefits of using Linux in spacecraft flight software are simi-
lar to those for embedded systems in general. Yaghmour [6] and 
Hallinan [8] have identified the following benefits for using Linux 
in embedded systems.

CC Support for many hardware architectures–perhaps widest 
support by any OS–allows freedom in selection of the hard-
ware platform

CC The Linux code base can be relied upon due to its very wide 
adoption, and availability of source code allows verifying 
correctness and correcting found problems without delay

CC Support for many communication protocols and standards 
make interfacing with external devices easy

CC Availability of standardized development tools for example 
from the GNU project

CC Large developer community provides support and developer 
recruitment pool

CC Possibility of vendor independence, open source licensing, 
and low cost of adoption, 

furthermore, Birrane, et al. [5] have found more specific benefits 
of using Linux in spacecraft flight software:

CC Optional (soft) real-time capabilities

CC Parts of software can be developed and debugged on desktop 
Linux computers and ported to flight environment with little 
effort

CC Existence of huge catalogue of Linux software from various 
industries that can be taken into use in the flight computer 
with little effort, including data compression, file systems, 
operations scheduling, data processing, security-related soft-
ware, algorithms, and scripting

CC Standards such as POSIX allow flight software to be de-
coupled by modularizing it to sets of programs or processes 
that run on Linux, reducing development time and allowing 
per-program updates to the system.

Many of the projects analyzed in the previous section also 
noted their reasons for choosing Linux, which usually reflected the 
items mentioned above.

Open-source software may sometimes be perceived as error 
prone; however, since the software code is freely available, any 
possibly present bugs are detected and fixed more quickly, and the 
fixes can be provided back to the community. Developers may also 
add useful features to the software, and make them available to 
other users. Nearly all projects studied in this article considered 
the availability of Linux source code beneficial to them, as they 
could find problems, test modifications, and make customizations 
easily [30], [31].
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Linux has many useful general-purpose facilities available, 
such as file systems, data bus interfaces, process scheduling, and 
interprocess communication. The POSIX abstractions have existed 
for decades, and most POSIX compatible software can be made to 
run on the embedded Linux system. Generic spacecraft software 
modules–handling, for example, attitude control–targeting Linux 
could be written and distributed commercially or noncommercially 
across projects. As mentioned, SpaceX has reused the same soft-
ware in their launch vehicle and orbital spacecraft. Linux could 
thus make it easier to produce hardware-independent satellite soft-
ware systems.

Shell scripting in Linux can substitute on-board control proce-
dures that are traditionally used to automate spacecraft operations 
[1]. This approach was used for example in TacSat-1 [9].

DRAWBACKS AND MITIGATING THEM

Choosing Linux limits the choice of hardware; the processor must 
have a memory management unit, and 8-bit and 16-bit processors 
are mostly ruled out. The exception is μClinux, which can run on 
16-bit processors without memory management units [6]. Howev-
er, this is becoming a nonissue: for example, many mobile phones 
use 32-bit and 64-bit processors with very low power consump-
tion. Low-power 32-bit processors can be used in place of 8-bit 
and 16-bit ones.

Birrane, et al. [5] noted problems in the package dependencies 
of many Linux programs they wanted to port to their systems. The 
programs were dependent on underlying packages, which contained 
much more features and code than what the actually needed program 
would use, thus leading to code bloat. When using nontailored Linux 
distributions, much of the available software might be unused in the 
actual application. If this extra software is flown, it either must be 
verified and validated along with the actually used software, or it 
must be verified that the extra software is never used during flight. 
While possibly time consuming, it is possible to remove the addi-
tional quality assurance burden by tailoring the custom distribution 
to completely remove any unused extra software [6]. As processing 
hardware increases in capability, the performance cost of using a 
general-purpose OS may become nearly negligible. The existence 
of “extra” software is not a performance problem if the system has 
enough spare memory and processing capability; it may be less ex-
pensive to pick more capable hardware than to carefully hand-tailor 
the distributions. On the other hand, it is also possible to customize 
Linux to run on very little resources [9].

A major drawback is that Linux has not been designed to be 
an RTOS. However, additions exist to make Linux more real-time 
friendly. In some cases, the number of hard real-time constraints 
can be reduced with design changes; and for those hard real-time 
constraints that remain, one option is to use a dedicated controller 
to handle them, or to use some real-time Linux variant. To han-
dle the hard real-time problem, projects such as RTLinux, RTAI, 
xLuna, and μITRON have used a similar architectural solution of 
using a separate microkernel below the Linux partition, which runs 
Linux as the idle task of the microkernel, thus Linux is executing 
when no other higher priority tasks (presumably with hard real-
time constraints) are blocking it [7].

Craveiro, et al. [7] and Rufino, et al. [32] describe the AIR 
project, which has studied ARINC 653 standard compatible 
methods of using Linux kernel in safety-critical hard real-time 
systems. Their method is based on time-space partitioning. A 
simplified version of the AIR architecture is shown in Figure 7. 
In this scenario, a microkernel running on the on-board computer 
executes partitions sequentially, and each partition contains its 
own data and executable code. One partition may then contain 
Linux kernel, while other partitions run ordinary RTOS kernels. 
The scheduling of partitions is strictly deterministic: each parti-
tion is cyclically allocated a fixed time slice. This determinism 
allows the development of hard real-time systems, while ben-
efiting from the availability of Linux: Craveiro, et al. especially 
note that this allows using much of the software developed for 
Linux without tediously porting it to an RTOS, and additionally 
the scripting capability of Linux is made available, without spe-
cifically porting an interpreter. However, it must be made certain 
that the use of Linux does not affect the consistency and safety 
of the time-space partitioning. The authors also note that the AIR 
architecture ensures a fixed amount of processing time for the 
Linux partition and real-time partitions during each cycle, while 
earlier implementations that run Linux as the idle task may block 
Linux applications indefinitely if the higher priority tasks are un-
der heavy load [7].

DISCUSSION

While early use of Linux in space was experimental, SpaceX and 
Planet have already successfully used it in commercial missions. 
They are possibly the most influential space industry entities to 
have declared using Linux in their avionics. Their success will 
likely influence the rate of Linux adoption elsewhere in the indus-

Figure 7.
Linux kernel and time-space partitioning. Adapted from [7].
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try. It seems likely that use of Linux in spacecraft flight software 
will continue to grow, driven by the following factors:

1.	 Increasing complexity of demands placed on the flight soft-
ware requires reuse of existing software modules, tools, and 
processes.

2.	 Computing power continues to become cheaper and is requir-
ing less power, reducing the need for detailed optimization of 
software.

3.	 Skilled labor familiar with Linux-based mobile development is 
available more readily than RTOS developers

However, the hard real-time suitability of Linux still remains 
questionable; while we have described some possible solutions, 
there is no de facto standard way of making Linux hard real-time 
compatible. However, SpaceX has demonstrated with their Falcon 
9 rocket that Linux can be used very well in hard real-time systems. 
Linux will not be the solution for all systems; some are still best 
written at low level without OS. Bringing Linux to the embedded 
platform allows utilizing the huge catalogue of Linux-compatible 
software developed during the past decades. This benefit must be 
weighed with the real-time considerations.

If Linux is to be used, hardware needs to be capable of running 
it. COTS hardware, due to its prevalent use across all industries, 
evolves much faster than the so-called space-grade or radiation-
hardened hardware. Consumer electronics win in all performance, 
power consumption, and size categories; robustness, durability, and 
radiation tolerance is where “traditional” space hardware stands 
out. However, redundancy can be used to build robust systems 
with off-the-shelf electronics by duplicating the hardware compo-
nents, or in case of Planet, by duplicating the satellites themselves.

Using Linux in space does not necessarily differ much from 
many terrestrial applications, and much “terrestrial” software and 
utilities can be reused for space applications. Many problems en-
countered during development may already have been solved, and 
the solution may be available as open source.

The ease of deploying Linux may be deceptive: it may be rela-
tively easy to get the Linux kernel to boot on the target platform 
and some applications running, but deeply understanding the ker-
nel well enough to use Linux in safety-critical software is a much 
bigger effort. Linux is complex, and systems built on Linux will be 
complex, and thus hard to test. Quality assurance remains impor-
tant in preventing even simple problems such as the LightSail-1 
disk overflow problem already discussed. Some systems may be 
quick to develop with Linux, but very hard to test; on the other 
hand, the same systems could be written from ground up with the 
same effort, and very easily tested. The difficulty of verifying and 
validating Linux-based systems is probably the reason for its cur-
rent nonadoption in traditional space industry avionics.

CONCLUSIONS

This article discussed the use of Linux in spacecraft. Several cases 
found in literature were presented and studied.

It was found that Linux has several benefits for spacecraft 
software development, including availability of source code and 

development tools, large user community and pool of develop-
ers, deployment across several industries thus leading to off-the-
shelf availability of many utilities and software, and support for 
many types of hardware. Platform-independent, Linux-targeted 
software could even be developed and used across various mis-
sions.

However, before Linux is to be used, questions that need to 
be considered include limiting hardware selection mostly to 32-bit 
and 64-bit architectures, uncertain and unstandardized hard real-
time capabilities, and the possible presence of unused software 
modules that only consume resources without additional value.

It is likely that the use of Linux in all kinds of spacecraft will 
continue to grow. SpaceX and Planet have already commercially 
proven that Linux can be used equally well in all categories of 
spacecraft: launch vehicles, CubeSats, and, in the future, manned 
spacecraft. Thus Linux software could be traded between space-
craft, and everything “terrestrial” developed for Linux can also be 
taken into space with very little effort. The popularity of Linux 
is possibly one of the greatest reasons why it will continue to be 
taken to space. 
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