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About me

• @ Collabora since 2016

• Mostly working on the kernel – media subsystem:

– Maintainer of rkisp1 driver

– Maintainer of vimc driver

• Outreachy intern in 2015 – vimc projet

• Co-coordinator of Linux Kernel project in Outreachy
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Main goal of this presentation

• Overview of Camera ISP Memory pipeline→ →

• Overview of Media Framework

• Design choices when implementing a driver

• Lessons learned when upstreaming rkisp1 driver

• Userspace tools (libcamera)
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Camera ISP Memory→ →
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Camera sensor
Application
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What is an ISP?

• Image signal processor

• Common use case:

– ISP receives the reading all those small color sensors

– Transforms in an image usable for userspace

• Performs several other image transformations
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Image Processing

• Format conversion (debayering, RGB, YUV)

• Crop / Resize

• White balance

• Compose

• Image stabilization

• Effects / filters

• Flip / Rotate

• etc

Hardware accelerated 
image processing

Offloads the CPU
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Statistics

• ISP can generate statistics:

– Histograms

– Area contrast

– etc

• Used by userspace to implement algorithms such as:

– Histogram equalization

– 3A (auto-focus, auto-exposure, auto-white balance)
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What an ISP is not

• ISP is not a codec

• ISPs work with raw/uncompressed images

• Codecs:

– Encoders: raw image  compressed image format→

(such as H.264, JPEG, VP9)

– Decoders: compressed image  raw image→
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ISPs architecture

Inline vs Offline
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Offline
• 2 phases:

– Sensor  Memory→

– Memory  ISP  Memory→ →

• Usually implemented in two separate drivers

– Coordinated by userspace

– Example Intel IPU3:

IPU3 CIO2 (camera interface) driver: gets the image from the sensor

IPU3 ImgU driver: process this image and sends to userspace
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Inline

• Data reaches memory only in the end:

– Sensor  ISP  Memory→ →

• Example: rkisp1 driver
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Hybrid

• Can get the image directly from the sensor or from memory

• Can behave as inline, or perform the second phase of offline

• Ex: MT8183 P1

                         +-----------+
                         |    DMA    |--------->|\
                         |   Input   |          |  \         +----------+        +-----------+
                         +-----------+          |   |        |  Bayer   |        | Processed |
                                                |MUX|------->|Processing|------->|  Output   |
     +-----------+       +-----------+          |   |        +----------+        +-----------+
     |   Sensor  |       |  Camera   |          |  /
     |           |------>| Interface |--------->|/
     +-----------+       +-----------+
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MIPI DPHY
(quick overview)
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Bus – MIPI DPHY

• Very common bus used in the market for cameras and displays

• Specified by MIPI Alliance

• Physical layer with high data-rate

• 4k images with a good frame rate
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Bus - MIPI DPHY

• Up to 4 data lanes

• I2C bus for configuration

• On top of this bus there can be two protocols:

– MIPI DSI-2: Display Serial Interface, to output images

– MIPI CSI-2: Camera Serial Interface, to capture images

• MIPI DPHY/CSI-2  frequent term in ISP land→
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Study case - RKISP1
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Rockchip RK3399 ISP

• rkisp1 is the driver of the ISP block present in Rockchip RK3399 SoCs

• RK3399 SoC can be found in devices such as:

– Scarlet Chromebooks

– RockPi boards

– Pinebook Pro laptops
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Rockchip RK3399 ISP

• Originally written by Rockchip

• Merged in kernel 5.6

• drivers/staging/

• 9k+ lines of code
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Rkisp1 hw architecture
                                                             rkisp1-resizer.c          rkisp1-capture.c
                                                          |====================|  |=======================|
                                rkisp1-isp.c                              Main Picture Path
                        |==========================|      |===============================================|
                        +-----------+  +--+--+--+--+      +--------+  +--------+              +-----------+
                        |           |  |  |  |  |  |      |        |  |        |              |           |
 +--------+    |\       |           |  |  |  |  |  |   -->|  Crop  |->|  RSZ   |------------->|           |
 |  MIPI  |--->|  \     |           |  |  |  |  |  |   |  |        |  |        |              |           |
 +--------+    |   |    |           |  |IE|IE|IE|IE|   |  +--------+  +--------+              |  Memory   |
               |MUX|--->|    ISP    |->|0 |1 |2 |3 |---+                                      | Interface |
 +--------+    |   |    |           |  |  |  |  |  |   |  +--------+  +--------+  +--------+  |           |
 |Parallel|--->|  /     |           |  |  |  |  |  |   |  |        |  |        |  |        |  |           |
 +--------+    |/       |           |  |  |  |  |  |   -->|  Crop  |->|  RSZ   |->|  RGB   |->|           |
                        |           |  |  |  |  |  |      |        |  |        |  | Rotate |  |           |
                        +-----------+  +--+--+--+--+      +--------+  +--------+  +--------+  +-----------+
                                                          |===============================================|
                                                                          Self Picture Path
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Rkisp1 hw architecture

• ISP Comprises with:

– Image Signal Processing

– Many Image Enhancement Blocks

– Crop

– Resizer

– RBG display ready image

– Image Rotation

• Self-path: preview

• Main-path: picture
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Kernel media framework
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Media topology

• Linux kernel exposes a topology to userspace

• Userpace can query /dev/mediaX

– Retrieve how inner blocks are interconnected

– Order of image processing
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Media topology

• Two types of nodes:

– subdevices: inner parts of the hardware

– video devices: dma engine, where userspace queues and dequeues 

buffers, containing images or metadata to/from the hardware

• Connected by links between pads

• NOTE: sensor is usually a separated driver



25

IPU3 CIO2 – offline – 1st phase
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IPU3 ImgU – offline – 2nd phase
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RKISP1 - inline
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Driver config architecture

Auto vs Manual config 
propagation
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Auto config propagation

Set resolution

Auto-propagation
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Manual config propagation

Set resolution

Set resolution

Set resolution
Set resolution

Set resolution

Set resolution
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Manual config propagation

• Increases complexity for userspace

• If formats don’t match  fail on STREAMON→

• Finer grain configuration in inner blocks of the hardware

• More blocks exposed, more complex

• Extendable
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Why rkisp1 is manual?
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Crop

• Specify a sub-rectangle in the image
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Crop - rkisp1

Set sub-rectangle?
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Crop - rkisp1

• rkisp1 allows cropping the image from the sensor

• rkisp1 allows cropping the image before resizing

• Exposing crop once in the video node would be confusing
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Crop - rkisp1

Set sub-rectangle

Set sub-rectangle
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Image stabilizer

• “Lock  sub-rectangle in the picture”

• Shaking the phone won’t shake the image much
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Setting sub-rectangles

Set sub-rectangle (crop)

Set sub-rectangle (crop)

Set sub-rectangle (img-stab)
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Phy subsystem
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Rkisp1 – original topology

Removed
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Phy Abstraction Layer

• Manual config propagation  more subdevices, more complex for userspace→

• Re-think exposed blocks

• Phy block  no image configuration exposed→

• Topology  image processing steps→

• Same processing steps can be used on top of different buses

– ex. rkisp1: parallel (not implemented), MIPI-DPHY/CSI2
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Phy – Lessons learned

• Lessons learned:

– Migrate bus code to PHY Abstraction Layer (drivers/phy/)

– Generic topology for any bus – less complex for userspace

– ISP driver is much cleaner

– Phy driver can be used for DSI
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Lessons learned



44

Updating to staging

• V4L2 community is open to accept drivers in staging

(with the condition that you work on it to move it out asap)

• Detailed TODO list

• Make it available to other people to use

• Improve workflow, easier to get contributions from others, testing, bug reports

• Decrease maintenance cost  no need to keep rebasing→
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More lessons learned

• Don't be afraid to re-organize the code (files, namings, code order, re-writing functions)

• Split the code between different files per implementation node, at least between video nodes and 
subdevice nodes

• Separate the code that configures the hardware, from the code that deals with the V4L2 API

• Remove code you are not using, you that you can't test, for example:

– rk3288 support

– phy driver ports (SoC has 2 MIPI-DPHY/CSI2 ports, I had was only using one)

– Simplify the code – but keep extendable

– Lots of macros in headers
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Userspace support

Libcamera
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Complex topologies

• Not all features are auto discoverable

Examples (rkisp1):

– sub-rectangle for cropping

vs sub-rectangle for image stabilizer

– Meta-data buffers structure:

● rkisp1_stats

● rkisp1_params
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Complex topologies

• Requires userspace specific implementation for specific drivers

• Specific applications to specific hardware

• Not very reusable code

• Hard to test
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Libcamera

• Open source camera stack for many platforms with 
a core userspace library

• Userspace drivers

• Image processing algorithms
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Architecture

---------------------------< libcamera Public API >---------------------------
                 ^                                      ^
                 |                                      |
                 v                                      v
          +-------------+  +-------------------------------------------------+
          |   Camera    |  |  Camera Device                                  |
          |   Devices   |  | +---------------------------------------------+ |
          |   Manager   |  | | Device-Agnostic                             | |
          +-------------+  | |                                             | |
                 ^         | |                    +------------------------+ |
                 |         | |                    |   ~~~~~~~~~~~~~~~~~~~~~  |
                 |         | |                    |  {  +---------------+  } |
                 |         | |                    |  }  | ////Image//// |  { |
                 |         | |                    | <-> | /Processing// |  } |
                 |         | |                    |  }  | /Algorithms// |  { |
                 |         | |                    |  {  +---------------+  } |
                 |         | |                    |   ~~~~~~~~~~~~~~~~~~~~~  |
                 |         | |                    | ======================== |
                 |         | |                    |     +---------------+    |
                 |         | |                    |     | //Pipeline/// |    |
                 |         | |                    | <-> | ///Handler/// |    |
                 |         | |                    |     | ///////////// |    |
                 |         | +--------------------+     +---------------+    |
                 |         |                                 Device-Specific |
                 |         +-------------------------------------------------+
                 |                     ^                        ^
                 |                     |                        |
                 v                     v                        v
        +--------------------------------------------------------------------+
        | Helpers and Support Classes                                        |
        | +-------------+  +-------------+  +-------------+  +-------------+ |
        | |  MC & V4L2  |  |   Buffers   |  | Sandboxing  |  |   Plugins   | |
        | |   Support   |  |  Allocator  |  |     IPC     |  |   Manager   | |
        | +-------------+  +-------------+  +-------------+  +-------------+ |
        | +-------------+  +-------------+                                   |
        | |  Pipeline   |  |     ...     |                                   |
        | |   Runner    |  |             |                                   |
        | +-------------+  +-------------+                                   |
        +--------------------------------------------------------------------+

          /// Device-Specific Components
          ~~~ Sandboxing
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Tips

• Add/push/update support for your hardware in Libcamera

• Easier to test

• More users

• More developers involved

• Contribute with the project
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Thank you!
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