
Open FirstOpen First

Image Signal
Processor (ISP) Drivers
& How to merge one upstream

Helen Koike
Senior Software Engineer

2

About me

• @ Collabora since 2016

• Mostly working on the kernel – media subsystem:

– Maintainer of rkisp1 driver

– Maintainer of vimc driver

• Outreachy intern in 2015 – vimc projet

• Co-coordinator of Linux Kernel project in Outreachy

3

Main goal of this presentation

• Overview of Camera ISP Memory pipeline→ →

• Overview of Media Framework

• Design choices when implementing a driver

• Lessons learned when upstreaming rkisp1 driver

• Userspace tools (libcamera)

4

Camera ISP Memory→ →

5

Camera sensor
Application

6

What is an ISP?

• Image signal processor

• Common use case:

– ISP receives the reading all those small color sensors

– Transforms in an image usable for userspace

• Performs several other image transformations

7

Image Processing

• Format conversion (debayering, RGB, YUV)

• Crop / Resize

• White balance

• Compose

• Image stabilization

• Effects / filters

• Flip / Rotate

• etc

Hardware accelerated
image processing

Offloads the CPU

8

Statistics

• ISP can generate statistics:

– Histograms

– Area contrast

– etc

• Used by userspace to implement algorithms such as:

– Histogram equalization

– 3A (auto-focus, auto-exposure, auto-white balance)

9

What an ISP is not

• ISP is not a codec

• ISPs work with raw/uncompressed images

• Codecs:

– Encoders: raw image compressed image format→

(such as H.264, JPEG, VP9)

– Decoders: compressed image raw image→

10

ISPs architecture

Inline vs Offline

11

Offline
• 2 phases:

– Sensor Memory→

– Memory ISP Memory→ →

• Usually implemented in two separate drivers

– Coordinated by userspace

– Example Intel IPU3:

IPU3 CIO2 (camera interface) driver: gets the image from the sensor

IPU3 ImgU driver: process this image and sends to userspace

12

Inline

• Data reaches memory only in the end:

– Sensor ISP Memory→ →

• Example: rkisp1 driver

13

Hybrid

• Can get the image directly from the sensor or from memory

• Can behave as inline, or perform the second phase of offline

• Ex: MT8183 P1

 +-----------+
 | DMA |--------->|\
 | Input | | \ +----------+ +-----------+
 +-----------+ | | | Bayer | | Processed |
 |MUX|------->|Processing|------->| Output |
 +-----------+ +-----------+ | | +----------+ +-----------+
 | Sensor | | Camera | | /
 | |------>| Interface |--------->|/
 +-----------+ +-----------+

14

MIPI DPHY
(quick overview)

15

Bus – MIPI DPHY

• Very common bus used in the market for cameras and displays

• Specified by MIPI Alliance

• Physical layer with high data-rate

• 4k images with a good frame rate

16

Bus - MIPI DPHY

• Up to 4 data lanes

• I2C bus for configuration

• On top of this bus there can be two protocols:

– MIPI DSI-2: Display Serial Interface, to output images

– MIPI CSI-2: Camera Serial Interface, to capture images

• MIPI DPHY/CSI-2 frequent term in ISP land→

17

Study case - RKISP1

18

Rockchip RK3399 ISP

• rkisp1 is the driver of the ISP block present in Rockchip RK3399 SoCs

• RK3399 SoC can be found in devices such as:

– Scarlet Chromebooks

– RockPi boards

– Pinebook Pro laptops

19

Rockchip RK3399 ISP

• Originally written by Rockchip

• Merged in kernel 5.6

• drivers/staging/

• 9k+ lines of code

20

Rkisp1 hw architecture
 rkisp1-resizer.c rkisp1-capture.c
 |====================| |=======================|
 rkisp1-isp.c Main Picture Path
 |==========================| |===|
 +-----------+ +--+--+--+--+ +--------+ +--------+ +-----------+
 | | | | | | | | | | | | |
 +--------+ |\ | | | | | | | -->| Crop |->| RSZ |------------->| |
 | MIPI |--->| \ | | | | | | | | | | | | | |
 +--------+ | | | | |IE|IE|IE|IE| | +--------+ +--------+ | Memory |
 |MUX|--->| ISP |->|0 |1 |2 |3 |---+ | Interface |
 +--------+ | | | | | | | | | | +--------+ +--------+ +--------+ | |
 |Parallel|--->| / | | | | | | | | | | | | | | | |
 +--------+ |/ | | | | | | | -->| Crop |->| RSZ |->| RGB |->| |
 | | | | | | | | | | | | Rotate | | |
 +-----------+ +--+--+--+--+ +--------+ +--------+ +--------+ +-----------+
 |===|
 Self Picture Path

21

Rkisp1 hw architecture

• ISP Comprises with:

– Image Signal Processing

– Many Image Enhancement Blocks

– Crop

– Resizer

– RBG display ready image

– Image Rotation

• Self-path: preview

• Main-path: picture

22

Kernel media framework

23

Media topology

• Linux kernel exposes a topology to userspace

• Userpace can query /dev/mediaX

– Retrieve how inner blocks are interconnected

– Order of image processing

24

Media topology

• Two types of nodes:

– subdevices: inner parts of the hardware

– video devices: dma engine, where userspace queues and dequeues

buffers, containing images or metadata to/from the hardware

• Connected by links between pads

• NOTE: sensor is usually a separated driver

25

IPU3 CIO2 – offline – 1st phase

26

IPU3 ImgU – offline – 2nd phase

27

RKISP1 - inline

28

Driver config architecture

Auto vs Manual config
propagation

29

Auto config propagation

Set resolution

Auto-propagation

30

Manual config propagation

Set resolution

Set resolution

Set resolution
Set resolution

Set resolution

Set resolution

31

Manual config propagation

• Increases complexity for userspace

• If formats don’t match fail on STREAMON→

• Finer grain configuration in inner blocks of the hardware

• More blocks exposed, more complex

• Extendable

32

Why rkisp1 is manual?

33

Crop

• Specify a sub-rectangle in the image

34

Crop - rkisp1

Set sub-rectangle?

35

Crop - rkisp1

• rkisp1 allows cropping the image from the sensor

• rkisp1 allows cropping the image before resizing

• Exposing crop once in the video node would be confusing

36

Crop - rkisp1

Set sub-rectangle

Set sub-rectangle

37

Image stabilizer

• “Lock sub-rectangle in the picture”

• Shaking the phone won’t shake the image much

38

Setting sub-rectangles

Set sub-rectangle (crop)

Set sub-rectangle (crop)

Set sub-rectangle (img-stab)

39

Phy subsystem

40

Rkisp1 – original topology

Removed

41

Phy Abstraction Layer

• Manual config propagation more subdevices, more complex for userspace→

• Re-think exposed blocks

• Phy block no image configuration exposed→

• Topology image processing steps→

• Same processing steps can be used on top of different buses

– ex. rkisp1: parallel (not implemented), MIPI-DPHY/CSI2

42

Phy – Lessons learned

• Lessons learned:

– Migrate bus code to PHY Abstraction Layer (drivers/phy/)

– Generic topology for any bus – less complex for userspace

– ISP driver is much cleaner

– Phy driver can be used for DSI

43

Lessons learned

44

Updating to staging

• V4L2 community is open to accept drivers in staging

(with the condition that you work on it to move it out asap)

• Detailed TODO list

• Make it available to other people to use

• Improve workflow, easier to get contributions from others, testing, bug reports

• Decrease maintenance cost no need to keep rebasing→

45

More lessons learned

• Don't be afraid to re-organize the code (files, namings, code order, re-writing functions)

• Split the code between different files per implementation node, at least between video nodes and
subdevice nodes

• Separate the code that configures the hardware, from the code that deals with the V4L2 API

• Remove code you are not using, you that you can't test, for example:

– rk3288 support

– phy driver ports (SoC has 2 MIPI-DPHY/CSI2 ports, I had was only using one)

– Simplify the code – but keep extendable

– Lots of macros in headers

46

Userspace support

Libcamera

47

Complex topologies

• Not all features are auto discoverable

Examples (rkisp1):

– sub-rectangle for cropping

vs sub-rectangle for image stabilizer

– Meta-data buffers structure:

● rkisp1_stats

● rkisp1_params

48

Complex topologies

• Requires userspace specific implementation for specific drivers

• Specific applications to specific hardware

• Not very reusable code

• Hard to test

49

Libcamera

• Open source camera stack for many platforms with
a core userspace library

• Userspace drivers

• Image processing algorithms

50

Architecture

---------------------------< libcamera Public API >---------------------------
 ^ ^
 | |
 v v
 +-------------+ +---+
 | Camera | | Camera Device | | |
 | Devices | | +---+ |
 | Manager | | | Device-Agnostic | |
 +-------------+ | | | |
 ^ | | +------------------------+ |
 | | | | ~~~~~~~~~~~~~~~~~~~~~ | | |
 | | | | { +---------------+ } |
 | | | | } | ////Image//// | { |
 | | | | <-> | /Processing// | } |
 | | | | } | /Algorithms// | { |
 | | | | { +---------------+ } |
 | | | | ~~~~~~~~~~~~~~~~~~~~~ |
 | | | | ======================== |
 | | | | +---------------+ |
 | | | | | //Pipeline/// | |
 | | | | <-> | ///Handler/// | |
 | | | | | ///////////// | |
 | | +--------------------+ +---------------+ |
 | | Device-Specific |
 | +---+
 | ^ ^
 | | |
 v v v
 +--+
 | Helpers and Support Classes |
 | +-------------+ +-------------+ +-------------+ +-------------+ |
 | | MC & V4L2 | | Buffers | | Sandboxing | | Plugins | |
 | | Support | | Allocator | | IPC | | Manager | |
 | +-------------+ +-------------+ +-------------+ +-------------+ |
 | +-------------+ +-------------+ |
 | | Pipeline | | ... | |
 | | Runner | | | |
 | +-------------+ +-------------+ |
 +--+

 /// Device-Specific Components
          ~~~ Sandboxing



51

Tips

• Add/push/update support for your hardware in Libcamera

• Easier to test

• More users

• More developers involved

• Contribute with the project



52

Thank you!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

