
Keeping Up With The

Joneses (CVEs)
David Reyna

Wind River Systems

david.reyna@windriver.com

Security Response Management

Risk, Cost, and Best Practices in an
Imperfect World

• Keeping our products secure is a requirement
for survival

• Security data is available, but can be a flood of
data with varying quality and completeness

• Managing security defects can be very
inefficient, resulting in high costs

• We need to share best practices, knowledge,
awareness, automation, and tools

Agenda

• Understanding CVE sources

• Understanding CVE quality

• Understanding CVE volume

• Managing your security response

• Costs, best practices, solutions

• New open source ‘Security Response Tool’
(SRTool)

General Security Patch Workflow

• Upstream CVE Sources
– Gather data/fixes/info

– Publish CVE Data

• You (OS Vendor/OEM/etc.)
– Scan upstream CVEs

– Manage CVE response

– Fix CVEs

– Create patches

• Customer
– Receive patches

– Test/deploy

(Covered Topics)

CVEs

• CVE (Common Vulnerability Enumerations)

– The enumerations of the community tracked security vulnerabilities,

separated by the year reported (e.g. CVE-2018-12345)

• CVE content

– Description field

– Estimated severity score (CCSV), Low to Critical, 0.0 to 10.0

– Estimated impact and domain scores, e.g. “Attack Vector”, “Privileges

Required”, “User Interaction”, “Scope”, “Confidentiality”, …

– List of affected products and their version numbers (CPEs)

– List of support links (published information, patches, reproducers, …)

– Weakness categories (CWE), e.g. “buffer overflow”, “pointer issues”

Upstream CVE Sources

• MITRE

– Manages the list of CVEs

• NIST (National Institute of Standards and Technology)

– Manages the National Vulnerability Database (NVD) of CVEs

• Hardware Vendors, Software Maintainers, Distros

– Many vendors track and share CVE's relevant to their product

– Many CVE aggregators also available (e.g. cvedetails.com)

• Mailing lists, websites, and forums (public and private)

– Preview of coming issues, place to discuss issues

CVE Workflow: Normal/Expected

Community MITRE SI Vendors /
Maintainers

Vendors
(NDA)

NIST Vendors
(Public)

Customers

Discover

(Private) (Work) (Test) -

Public Work Public Watch Watch

Fix – public Test “

Patch “

Receive/ Fix

CVE Workflow: Out-of-order/Delayed

Community MITRE SI Vendors /
Maintainers

Vendors
(NDA)

NIST Vendors
(Public)

Customers

Discover

Reserved Work Test -

“ Fix – Public - What? What?

“ - Some Patch Some fix

Public - More Patch More fix

Public All Patch All fix

A High Profile CVE - Simplified
Community MITRE SI Vendors /

Maintainers
Vendors
(NDA)

NIST Vendors
(Public)

Customers

Discover Reserve

“ Work 1,2,3,4 Test 3,4 -

Public “ Work 5,6 Test 5,6 - What? What?

Public Work 7,8 Test 7,8 Public Sorry OMG

Patch A,B NDA Test, Sorry! Sorry! OMG!

Patch C,D NDA Test, Sorry!! Sorry!! OMG!!

Patch E,F Public Test, Sorry!!! Test, Sorry!!! OMG!!!

Patch G Public Test, Sorry!!!! Test, Sorry!!!! OMG!!!!

Patch H, I, J Good Enough Patch H,I,J,… Fix H,I,J …

The focus here is not the vulnerability itself, but the
process and cost in handling that vulnerability

Quality of CVEs: Issues

• CVEs may only have a brief or incomplete description

• CVE affected product list (CPEs) may have gaps, errors,

unexpected version deviations, even be empty

• CVE content may be misleading, mentioning one package

when it actually affects a different package

• CVEs may have few, inaccurate, or missing content links

(discussion, reproducers, patches)

• CVE status changes continually as new information is

discovered and shared

• Sometimes delays in content updates

Quality of CVEs: Issues (2)

• The most recently created CVEs (within the last few
months) are particularly prone to the above issues, but
unfortunately these are often all that organizations
have to work with for their pending releases (i.e. there
is often no CPE data to work with)

• Tools (e.g. CVE scanners) must insure that (a) they
are flexible in processing the information, (b) that they
can differentiate between strong and weak data, (c)
that expectations are set as to what the tool is able
conclude and act upon, and that (d) humans are
appropriately included in the process.

Quality of CVEs: Examples 1

• CVE-2017-13220:

– The CPE says “cpe:2.3:o:google:android:-

:*:*:*:*:*:*:*” then talks about upstream kernel

issues and refers to a kernel SHA.

• CVE-2014-2524:

– Has a CPE which claims all releases of

“readline” 6.3 and below are vulnerable, but

the problem only exists in 6.0 onwards.

Quality of CVEs: Examples 2

• CVE-2017-8872:
– Against “libxml” resulted in a bug and patch, but

upstream ignored it. An almost-identical patch was
merged recently but no mention of the CVE was
made

• CVE-2018-10195:
– A case study in 'dark CVEs'. Reserved in MITRE,

Red Hat have their own notice and a patch. Since
it is for software which is long-dead, this patch will
never go upstream.

Volume of CVE Data: Issues

• Volume of CVEs is 1000+ per month and
growing

• Every new CVE must be evaluated, even if
only a percentage may be applicable

• Costly in sheer numbers and required
analysis overhead given the quality limitations

• Incorrectly categorizing a vulnerability can be
even more costly in customer escalations and
trust

Volume of CVE Data: Example

Tools: CVE System Analysis

• Can be very valuable in targeting product
specific review activities

• Tells you of known vulnerabilities, but not
what you are NOT vulnerable to

• Scans almost exclusively in the category of
'needs investigation‘

• Depends on known data

• Example: Nessus

Tools: CVE Build/Source Analysis

• Can be more precise than system analysis

• Possible for something to trigger a vulnerable
warning for components never used

• You still need to determine what you are not
vulnerable to, understand the items that were
reported, etc.

• Depends on known data

• Examples: Black Duck, Yocto Project ‘cve-
report’, Dependency Tracker

Security Response Management

• While there is heighten awareness about device

vulnerabilities, what is often missing is

awareness about the process of managing the

security response process itself

• Security response management is overhead,

where costs need to be understood and

reviewed

• Security response management does not make

money, but it does protect money

Security Management: Issues

• The amount of work is growing, in the volume of CVEs and in the

product support matrix

• The vulnerabilities often apply differently against different releases

• The data is often not well integration with other systems, for

example defect managers, agile managers, compliance tools

• The data is often not aggregated in accessible ways
– Difficult to share current data between development teams

– Difficult to share current status between teams and management

– Continual re-gathering status for reporting to management and customers

• Embargoed data requires special handling
– Compliance tracking and reporting

– Who knew what when

Security Management Services

• Some companies offload this process to

external vendors

– They can provide the missing expertise and/or

resources

– The pass-through can reduce customer

response times

– The external support can be expensive

Defect systems vs. Security Management

Defect systems are often poor security

management systems

• Defects are per product, CVE's are across products

• An issue may need to be tracked before a CVE is created or
published

• Hard to manage embargoed data in defect systems
– Projects are normally public to entire product groups

– Would require shadow projects

– Would require a shadow project per authorized access list

• Awkward promoting private issues to public defects

Cost overview: Necessary costs

• Tracking upstream CVE's

• Creating and fixing defects

• Provide updates to customers,

management

• Provide patches to customers

Cost overview: Unnecessary costs

• Repeated manual polling of upstream data, initial and all updates

• Repeated manual polling of defect status

• Manually un-assisted analysis of each CVE for vulnerability status,

across products

• Manually re-analyzing each updated CVE for vulnerability status

• Manually tracking and sharing patches, reports, documents, ...

• Manually regathering status for customers, management

• Manually tracking private data, and "who knew what when"

• Manually repackaging data for public database

Best Practices

• Automate as much of the process as possible
– CVE data gathering, updating, change notifications

– Defect update polling, with filtered change notifications

– Report tools for management and customers

– History and audit tracking

• Use multiple sources
– NIST, MITRE, distros, oss-security, linux-distros

(private list), …

• Aggregate the data

– Central database, central document store

Best Practices (2)

• Provide easy access to the data
– GUI interfaces, command line scripts

• Be flexible with the data
– Design for the imperfections of the upstream data

– Defocus details (like version numbering) during analysis, to avoid
big misses from small errors

• Provide tools for CVE inflow triage
– Provide tools to help walk the volume of CVEs

– Provide heuristics to help provide guidance given the gaps in the
provided information

• Provide management for NDA information
– Central but safe storage, user restrictions, easy promotion to

public database

Introducing the SRTool

 • Wind River has developed a tool called the

“Security Response Tool” based on its

cumulative experience

• Its goal is to address the process pain points

and inefficiencies, to scale with a limited staff,

and to implement best practices

• Wind River has shared this with open source

Srtool Features for Best Practices

• Automation for multiple CVE source updates,
defect status, report generation, history audit data

• Easy access via web interface and command line
scripts

• Data aggregation in SQL database, download
directory

• Data flexibility by design

• Tool for CVE inflow triage, with guidance
heuristics

• NDA management via user model, deploy model

SRTool: Vulnerability Page Example

SRTool: Object Model

• Data source: represents external content, like CVE
data providers, defect system, and sustaining team

• CVE: the representation of the upstream CVEs

• Vulnerability: the mapping of CVE(s) issues across
the products

• Investigation: the mapping of a vulnerability to
specific product/defects

• Defect: the mapping to the organization’s defects
(Jira, Bugzilla) to CVE’s via Investigations

• Notifications: automatic messaging of changed
upstream CVE and internal defect status

SRTool: Functional Layout

cron job (trigger incremental updates)

Back end scripts

NIST

MITRE

Jira/Bugzilla

Sustaining

Data: Bulk files,

cached CVEs

SRTool Data Base (SQL)

| CVE | Vul | Inv | Defect | Notify |

Web Interface

Custom data scripts

Report scripts

Reports
SRTool Engine

Public
Facing

DB

Data:

Download cache

External
Sources

Other…

SRTool: Guided Incoming CVE Triage

• CVE incoming
rate 1000+ a
month

• View for fast
review and
triage

• Heuristics from
the previous
defects to help
guide the
filtering process

SRTool: Next Steps

• The SRTool is under active open source development, so

come join us!

• The design is modular, so it is easy to add your data

sources and implement your business rules

• The SRTool is intended at this time to be an internal tool,

with scripts to export clean data to the organization's public

CVE site

• The community page is hosted here:

– https://wiki.yoctoproject.org/wiki/Contribute_to_SRTool

https://wiki.yoctoproject.org/wiki/Contribute_to_SRTool
https://wiki.yoctoproject.org/wiki/Contribute_to_SRTool

Conclusion

• There is quite a wealth of vulnerability information available.

• With knowledge, awareness, adaptability, and automation, we

can manage this struggle.

• We need to spend people’s time on the actual problems, not

the process

• Use these links to learn more:

• https://lists.yoctoproject.org/listinfo/yocto-security

• david.reyna@windriver.com (SRTool maintainer)

See a live SRTool demo at the Yocto Project Booth!

https://lists.yoctoproject.org/listinfo/yocto-security
https://lists.yoctoproject.org/listinfo/yocto-security
https://lists.yoctoproject.org/listinfo/yocto-security
mailto:david.reyna@windriver.com

