
IBM Systems and Technology Group

© 2012 IBM Corporation

 Automated Test Framework (ATF)

Embedded Linux Conference
2012

 © 2012 IBM Corporation2

Overview

 ATF is a Domain Specific Embedded Language (DSEL) for
defining tests.

 Intended to be used for Unit Testing through System Testing

 Intended to allow Test Case reuse in simulated, prototype
hardware and release hardware environments.

 ATF consists of:
► A Perl-based Test API that provides:

● Communication to multiple test target via SSH, telnet, etc.
● Domain Specific Embedded Language (DSEL) for defining tests
● A wrapper on top of the Perl Test Harness

► Test Driver that allows running buckets of tests and summarizing
results

► Test cases that are written in the Test API DSEL and/or Perl

 © 2012 IBM Corporation3

Why ATF?

 Need 'simple-to-write' test cases

 Need to be able to run single tests or buckets of test cases

 Need the ability to drive several systems and firmware
components from a single test case:

► CLI calls
► RPC calls
► Packet Injection

 Wanted to avoid making test case writers learn complicated
programming languages

 Wanted the lightweight development cycle of a scripting
language

 No known existing test suite met all of these requirements

 © 2012 IBM Corporation4

Why Perl?

 Script language

 Code Reuse
► Perl's Test Harness
► Tools for handling Test Any Protocol

 Useful for making a DSEL
► Expressive syntax
► Reflective

 Powerful enough language to handle unexpected corner cases

 Learned Incrementally

 © 2012 IBM Corporation5

Target Uses

 Unit Testing
► Used by firmware developers to test good paths

 Build Verification Testing
► Used by the build to identify bad check ins

 Functional Testing
► Used by firmware testers to verify component functionality

 Simulation Verification
► Used by hardware modelers to detect regressions

 System Verification
► Used by system testers and manufacturing to confirm all

components work together

 Automated Regression Testing

 © 2012 IBM Corporation6

Results

 Tests are written by testers & developers
► Our team has little to no Perl experience
► Only one of the testers is a programmer

 1.5 dedicated testers since September 2010
► Create, run and write additional automation

 Running weekly regression of 6300 tests

 Running daily build verification test of 452 crucial tests

 © 2012 IBM Corporation7

Features

 Supports multiple targets

 HTML based report generation

 Simple parallel execution

 TODO keyword
► Intended for tests that are written before function is ready
► Can be used on entire test case, single test, or single expectation
► Test run, expectations checked, but results flagged as TODO
► Successes are marked as ‘unexpected successes’
► Failures are reported, but do not count as failures

 SKIP keyword
► Intended for tests that temporarily should not be run, because of some detrimental effect

(such as preventing other tests in the bucket from running)
► Can be used on entire test case or single test
► Unlike TODO, SKIP Will NOT execute the test nor will it check expectations
► Tests marked as SKIP are reported as skipped, not as failures

 Simplified flow control
► Test case stages with automatic flow control
► Variation keyword – allows simple to write looping mechanisms that can be

nested

 © 2012 IBM Corporation8

Technical Details

 © 2012 IBM Corporation9

Run Directive

 Declares an action to take

 Declares expectations of the
output

 Hides the mechanics of
► Running the command
► Gathering output
► Reporting results

 Results are reported in
 “Test Anything Protocol”

 © 2012 IBM Corporation10

Run Directive - Expectations

 Exit code expect/reject
► Declare a list of exit codes to

accept or reject

 Pattern expect/reject
► Declare a data source
► Declare a pattern
► Optionally capture data
► Optionally mark the test as

TODO or SKIP

 Assert
► Catches some corner case
► Provide a name
► Declare a Boolean expression

that must be true

 Ok
► Perl assertion for remaining

corner cases

 © 2012 IBM Corporation11

Run Directive – Lowered Expectations

 SKIP
► Can be used to prevent the

execution of:
● A test file
● A Run directive
● An individual pattern test

(But don't do this)

 TODO
► Prevents expect failures from

counting as failures
► Flags unexpected successes.
► Can mark

● A test file
● A Run directive
● An individual pattern test
● An exit code test

 © 2012 IBM Corporation12

Run Directive - Multi-target

 Support multiple targets

 Default target
► Defined as local host
► Can be changed via the

command line or via an
optional configuration file

 Host is defined as local
host

 Other targets are defined in
an optional configuration
file

 © 2012 IBM Corporation13

Run Directive – Parallel Execution

 Simplified parallel execution

 Run time is not deterministic

 Maximum run time is known

 Visibility of captured values
is deterministic

► Each Run sees captured
values available when they
are launched

► Foreground Run's results are
evaluated immediately at
completion

► Background Runs are
evaluated at the end of the
the enclosing Parallel block
in the order they were
launched.

 © 2012 IBM Corporation14

Run Directive – Previous Results

 © 2012 IBM Corporation15

Running Tests

 © 2012 IBM Corporation16

Test Output – HTML Report

 © 2012 IBM Corporation17

Test Output – HTML Report

 © 2012 IBM Corporation18

 High level conditional test execution
 Multiple TestCase declarations are

allowed in a single test file
 TestCase declarations cannot be

nested
 TestCase sections are implicit

Parallel blocks.

Flow Control - TestCase

 © 2012 IBM Corporation19

Test Case Sections and Flow Control

 GatherData - For ‘look but don’t touch’ inspection of the test
environment prior to modifying the system state or testing anything.
This data can be used to restore the original state in the ‘Cleanup’ stage

 Init - For modifying the test environment in preparation for the actual
test to be performed in the Test section, such as creating error
conditions or initializing resources to be used in the test

 Test - Perform the actual tests and check the results

 Cleanup - Perform any necessary cleanup before exiting the test case

Section Purpose Result on Failure

GatherData Inspect Environment Skip Init, Test and Cleanup

Init Setup for testing Skip Test and run Cleanup

Test Feature testing None

Cleanup Undo Changes Made Abort further testing

 © 2012 IBM Corporation

Start
TestCase

Gather
 Data

Init

Test

Cleanup

Success

Success

Success
Complete
TestCase

Yes

Yes

Yes

Stage

No

No

No

Abort
Further
Testing

Test Case Flow

 © 2012 IBM Corporation21

Flow Control - Variation

 Looping construct

 Can loop across multiple variables

 Annotates test output with active
variation state

 Preserves captures for each
iteration

 © 2012 IBM Corporation22

Native Perl

 Can handle corner cases
► Supports POSIX
► Support for system calls

 To reduce repetition
► Subroutines are easy to use
► The .. operator helps

generate lists
► A test group can easily make

reusable libraries of common
functions

 © 2012 IBM Corporation23

Future Plans – Packet Injection

 Currently using a prototype
inhouse

 For internal data channels

 Could be adapted to TCP or
other data stream

 © 2012 IBM Corporation24

Future Plans – Improvements

 Remote Session Reuse

 Output Issues in HTML Report

 More Data Capture (Logs, Files)

 Store Results

 Wrap more existing features in Perl's test harness

 Packaging and Dependency Bundling

 Interactive Mode (Pause, Runtime Input)

 Random Variation Subsets

 Other Protocols (CIM?)

 © 2012 IBM Corporation25

To Conclude...

 Testing is important at all levels of development.

 Tests must be easy to write or they won't be written.

 Tests must be easy to run or they won't be used.

 Use or make a Domain Specific Embedded Language
► For ease of use.
► For flexibility to handle unexpected corner cases.

 © 2012 IBM Corporation26

Questions?

 Contact
Daniel Hursh
hursh@us.ibm.com

 ATF Homepage
https://sourceforge.net/projects/atf-test

 ATF Source
git clone git://git.code.sf.net/p/atf-test/code atf-test-code

mailto:hursh@us.ibm.com
https://sourceforge.net/projects/atf-test

	
	Overview
	Why ATF?
	Why Perl?
	Target Users
	Results
	Features
	Details
	Run Directive
	Run Directive - Expectations
	Run Directive – Lowered Expectations
	Run Directive - Multi-target
	Run Directive – Parallel Execution
	Run Directive – Previous Results
	Running Tests
	Test Output – HTML Report
	Slide 17
	Flow Control - TestCase
	Test case sections and flow control
	Test Case Flow
	Flow Control - Variation
	Native Perl
	Future Plans – Packet Injection
	Future Plans – Improvements
	Slide 25
	Slide 26

