
Safety Vs Security
A tale of two updates

Jérémy Rosen

2/12

Introduction

This talk is about Philosophy and culture

I will talk mainly about Industrial embedded systems.

All projects are di�erent. No project have all the constraints

My de�nitions

Safety Anything related to reliability Security Anything related to hostile
takeover

We will discuss “Why embedded systems suck at security”
But just a small part.

3/12

Show of hands : who’s who

People with both hats

Safety people Security people

3/12

Show of hands : who’s who

People with both hats

Safety people

Security people

3/12

Show of hands : who’s who

People with both hats

Safety people

Security people

3/12

Show of hands : who’s who

People with both hats

Safety people Security people

4/12

The safety-critical brainwashing

Safety is here to ensure that the system “always works as expected”

Correct is not enough. You need to prove it.
Software 1

Hardware
Tools (compilers)

No dynamic memory allocation
Proofreading the generated Assembly code

It is easier to prove that a bug has no consequence than to prove that a �x is correct

Any change is a safety change

All assumptions must be documented and checked at every level.

Safety people are paranoid freaks

But our planes and trains are incredibly safe.

1. Machine learning is going to be. . . interesting

5/12

The security brainwashing

Security is here to ensure that the system “can’t be used out of its purpose”

Everything is an attack vector

Any little hole is potentially a leap-frog to a whole exploit

Security is a race
Find the weakness before the malevolant
Find a �x as fast as possible, temporary breakages are OK.
Deploy as fast as possible.
Embargoes are OK.

The whole world is out to get you

Security people are paranoid freaks

But attacks are a real thing
and the security culture has measurable results

6/12

Safety and security : Compared cultures

Safety

Code must be proven and certi�ed

Usage range is clearly de�ned

Bug likeliness goes down with time

A known bug with no consequence
should be ignored

Upgrade only as a last resort

Any change is a risk and
needs to be justi�ed

Security

Must react quickly to attack

Must protect from hostile behaviours

Threat models evolve and adapt

All bugs are potential exploits and
must be �xed

Always use the latest version

Any bug is a potential
security weakness and

needs to be �xed

Safety trumps everything else Security trumps everything else

6/12

Safety and security : Compared cultures

Safety

Code must be proven and certi�ed

Usage range is clearly de�ned

Bug likeliness goes down with time

A known bug with no consequence
should be ignored

Upgrade only as a last resort

Any change is a risk and
needs to be justi�ed

Security

Must react quickly to attack

Must protect from hostile behaviours

Threat models evolve and adapt

All bugs are potential exploits and
must be �xed

Always use the latest version

Any bug is a potential
security weakness and

needs to be �xed

Safety trumps everything else Security trumps everything else

6/12

Safety and security : Compared cultures

Safety

Code must be proven and certi�ed

Usage range is clearly de�ned

Bug likeliness goes down with time

A known bug with no consequence
should be ignored

Upgrade only as a last resort

Any change is a risk and
needs to be justi�ed

Security

Must react quickly to attack

Must protect from hostile behaviours

Threat models evolve and adapt

All bugs are potential exploits and
must be �xed

Always use the latest version

Any bug is a potential
security weakness and

needs to be �xed

Safety trumps everything else Security trumps everything else

6/12

Safety and security : Compared cultures

Safety

Code must be proven and certi�ed

Usage range is clearly de�ned

Bug likeliness goes down with time

A known bug with no consequence
should be ignored

Upgrade only as a last resort

Any change is a risk and
needs to be justi�ed

Security

Must react quickly to attack

Must protect from hostile behaviours

Threat models evolve and adapt

All bugs are potential exploits and
must be �xed

Always use the latest version

Any bug is a potential
security weakness and

needs to be �xed

Safety trumps everything else Security trumps everything else

6/12

Safety and security : Compared cultures

Safety

Code must be proven and certi�ed

Usage range is clearly de�ned

Bug likeliness goes down with time

A known bug with no consequence
should be ignored

Upgrade only as a last resort

Any change is a risk and
needs to be justi�ed

Security

Must react quickly to attack

Must protect from hostile behaviours

Threat models evolve and adapt

All bugs are potential exploits and
must be �xed

Always use the latest version

Any bug is a potential
security weakness and

needs to be �xed

Safety trumps everything else Security trumps everything else

6/12

Safety and security : Compared cultures

Safety

Code must be proven and certi�ed

Usage range is clearly de�ned

Bug likeliness goes down with time

A known bug with no consequence
should be ignored

Upgrade only as a last resort

Any change is a risk and
needs to be justi�ed

Security

Must react quickly to attack

Must protect from hostile behaviours

Threat models evolve and adapt

All bugs are potential exploits and
must be �xed

Always use the latest version

Any bug is a potential
security weakness and

needs to be �xed

Safety trumps everything else Security trumps everything else

6/12

Safety and security : Compared cultures

Safety

Code must be proven and certi�ed

Usage range is clearly de�ned

Bug likeliness goes down with time

A known bug with no consequence
should be ignored

Upgrade only as a last resort

Any change is a risk and
needs to be justi�ed

Security

Must react quickly to attack

Must protect from hostile behaviours

Threat models evolve and adapt

All bugs are potential exploits and
must be �xed

Always use the latest version

Any bug is a potential
security weakness and

needs to be �xed

Safety trumps everything else Security trumps everything else

7/12

The particularities of embedded system : Upgrades

System upgrades in the embedded world

Upgrades must be robust and deal with failures on their own
No access to the product
Bad blocks
Con�icting con�guration �les
Invalid user con�guration
Kernels need to be upgraded too. . .

Some systems can’t stop.

Old hardware can’t be phased out

Deployment time is controlled by the user

(Very) long term support

You can’t trust your subcontractors to survive
You can’t trust your technologies to survive
You can’t trust your engineers to survive

7/12

The particularities of embedded system : Upgrades

System upgrades in the embedded world

Upgrades must be robust and deal with failures on their own
No access to the product
Bad blocks
Con�icting con�guration �les
Invalid user con�guration
Kernels need to be upgraded too. . .

Some systems can’t stop.

Old hardware can’t be phased out

Deployment time is controlled by the user

(Very) long term support

You can’t trust your subcontractors to survive
You can’t trust your technologies to survive
You can’t trust your engineers to survive

7/12

The particularities of embedded system : Upgrades

System upgrades in the embedded world

Upgrades must be robust and deal with failures on their own
No access to the product
Bad blocks
Con�icting con�guration �les
Invalid user con�guration
Kernels need to be upgraded too. . .

Some systems can’t stop.

Old hardware can’t be phased out

Deployment time is controlled by the user

(Very) long term support

You can’t trust your subcontractors to survive
You can’t trust your technologies to survive
You can’t trust your engineers to survive

7/12

The particularities of embedded system : Upgrades

System upgrades in the embedded world

Upgrades must be robust and deal with failures on their own
No access to the product
Bad blocks
Con�icting con�guration �les
Invalid user con�guration
Kernels need to be upgraded too. . .

Some systems can’t stop.

Old hardware can’t be phased out

Deployment time is controlled by the user

(Very) long term support

You can’t trust your subcontractors to survive
You can’t trust your technologies to survive
You can’t trust your engineers to survive

7/12

The particularities of embedded system : Upgrades

System upgrades in the embedded world

Upgrades must be robust and deal with failures on their own
No access to the product
Bad blocks
Con�icting con�guration �les
Invalid user con�guration
Kernels need to be upgraded too. . .

Some systems can’t stop.

Old hardware can’t be phased out

Deployment time is controlled by the user

(Very) long term support
You can’t trust your subcontractors to survive
You can’t trust your technologies to survive
You can’t trust your engineers to survive

8/12

The particularities of embedded system : Security

Security in the embedded world

Physical access can’t be restricted.
Secure boot is a requirement
Each product must have a unique key at factory-time
You might need a unique image per product.

No return to a trusted state

Bootloader attacks are a thing
JTAG attacks are a thing
ROM are expensive

No upgrade culture

Ship and forget philosophy (hardware makers)
No long term maintenance team (startup culture)

You have to choose. . .
Bricked or Pwned?

8/12

The particularities of embedded system : Security

Security in the embedded world

Physical access can’t be restricted.
Secure boot is a requirement
Each product must have a unique key at factory-time
You might need a unique image per product.

No return to a trusted state
Bootloader attacks are a thing
JTAG attacks are a thing
ROM are expensive

No upgrade culture

Ship and forget philosophy (hardware makers)
No long term maintenance team (startup culture)

You have to choose. . .
Bricked or Pwned?

8/12

The particularities of embedded system : Security

Security in the embedded world

Physical access can’t be restricted.
Secure boot is a requirement
Each product must have a unique key at factory-time
You might need a unique image per product.

No return to a trusted state
Bootloader attacks are a thing
JTAG attacks are a thing
ROM are expensive

No upgrade culture
Ship and forget philosophy (hardware makers)
No long term maintenance team (startup culture)

You have to choose. . .
Bricked or Pwned?

8/12

The particularities of embedded system : Security

Security in the embedded world

Physical access can’t be restricted.
Secure boot is a requirement
Each product must have a unique key at factory-time
You might need a unique image per product.

No return to a trusted state
Bootloader attacks are a thing
JTAG attacks are a thing
ROM are expensive

No upgrade culture
Ship and forget philosophy (hardware makers)
No long term maintenance team (startup culture)

You have to choose. . .

Bricked or Pwned?

8/12

The particularities of embedded system : Security

Security in the embedded world

Physical access can’t be restricted.
Secure boot is a requirement
Each product must have a unique key at factory-time
You might need a unique image per product.

No return to a trusted state
Bootloader attacks are a thing
JTAG attacks are a thing
ROM are expensive

No upgrade culture
Ship and forget philosophy (hardware makers)
No long term maintenance team (startup culture)

You have to choose. . .
Bricked or Pwned?

9/12

How often should you publish security updates?

“As needed” is not realistic

Android Monthly security updates

Windows Monthly security updates

Linux Variable, but usually a rolling release. (Debian : automated daily updates)

iOS As needed (monthly)

Monthly seems to be the current best-practice

Yes but. . . It takes more than a month to re-certify

Yes but. . .What about our vulnerability window?

9/12

How often should you publish security updates?

“As needed” is not realistic

Android Monthly security updates

Windows Monthly security updates

Linux Variable, but usually a rolling release. (Debian : automated daily updates)

iOS As needed (monthly)

Monthly seems to be the current best-practice

Yes but. . . It takes more than a month to re-certify

Yes but. . .What about our vulnerability window?

9/12

How often should you publish security updates?

“As needed” is not realistic

Android Monthly security updates

Windows Monthly security updates

Linux Variable, but usually a rolling release. (Debian : automated daily updates)

iOS As needed (monthly)

Monthly seems to be the current best-practice

Yes but. . . It takes more than a month to re-certify

Yes but. . .What about our vulnerability window?

10/12

So. . .To summarize the problems

Both sides have very strict process requirements

That are justi�ed by years of good practices

That need to be strictly followed to be e�ective

That are e�ective at what they are meant to do

Those requirements are completely opposite

Speed critical Vs Con�dence critical

Proactive Vs Reactive

Preventive Vs Proven

It is impossible to reconcile both sides.
Let’s look at ways to mitigate the problem.

10/12

So. . .To summarize the problems

Both sides have very strict process requirements

That are justi�ed by years of good practices

That need to be strictly followed to be e�ective

That are e�ective at what they are meant to do

Those requirements are completely opposite

Speed critical Vs Con�dence critical

Proactive Vs Reactive

Preventive Vs Proven

It is impossible to reconcile both sides.
Let’s look at ways to mitigate the problem.

10/12

So. . .To summarize the problems

Both sides have very strict process requirements

That are justi�ed by years of good practices

That need to be strictly followed to be e�ective

That are e�ective at what they are meant to do

Those requirements are completely opposite

Speed critical Vs Con�dence critical

Proactive Vs Reactive

Preventive Vs Proven

It is impossible to reconcile both sides.
Let’s look at ways to mitigate the problem.

11/12

How to mitigate that problem

You can’t completely solve the problem. . .But you can mitigate

Avoid the problem entirely
Not all products are safety critical, but all product need to care about security.
You still need a robust upgrade system

Accelerate re-certi�cation

Automated testing should be part of the certi�cation.
Have a fast-path in your re-certi�cation process.
Minimize the safety critical perimeter and update it separately

Separate safety and security

Containers
Hypervisors
Hardware separation

Plan for security updates

Include an update agenda in your maintenence process
Plan an End of Life for your products and document it

11/12

How to mitigate that problem

You can’t completely solve the problem. . .But you can mitigate

Avoid the problem entirely
Not all products are safety critical, but all product need to care about security.
You still need a robust upgrade system

Accelerate re-certi�cation
Automated testing should be part of the certi�cation.
Have a fast-path in your re-certi�cation process.
Minimize the safety critical perimeter and update it separately

Separate safety and security

Containers
Hypervisors
Hardware separation

Plan for security updates

Include an update agenda in your maintenence process
Plan an End of Life for your products and document it

11/12

How to mitigate that problem

You can’t completely solve the problem. . .But you can mitigate

Avoid the problem entirely
Not all products are safety critical, but all product need to care about security.
You still need a robust upgrade system

Accelerate re-certi�cation
Automated testing should be part of the certi�cation.
Have a fast-path in your re-certi�cation process.
Minimize the safety critical perimeter and update it separately

Separate safety and security
Containers
Hypervisors
Hardware separation

Plan for security updates

Include an update agenda in your maintenence process
Plan an End of Life for your products and document it

11/12

How to mitigate that problem

You can’t completely solve the problem. . .But you can mitigate

Avoid the problem entirely
Not all products are safety critical, but all product need to care about security.
You still need a robust upgrade system

Accelerate re-certi�cation
Automated testing should be part of the certi�cation.
Have a fast-path in your re-certi�cation process.
Minimize the safety critical perimeter and update it separately

Separate safety and security
Containers
Hypervisors
Hardware separation

Plan for security updates
Include an update agenda in your maintenence process
Plan an End of Life for your products and document it

12/12

The End!

Thank you !
Questions?

