Safety Vs Security

A tale of two updates

Jérémy Rosen

ASMIEE

I.T IS OPEN

Introduction S

= This talk is about Philosophy and culture
= | will talk mainly about Industrial embedded systems.

= All projects are different. No project have all the constraints
= My definitions

Safety Anything related to reliability Security Anything related to hostile
takeover

We will discuss “Why embedded systems suck at security”
But just a small part.

2/12

Show of hands : who's who 5=

3/12

Show of hands : who's who 5=

Safety people

3/12

Show of hands : who's who S

Security people

3/12

Show of hands : who's who S

People with both hats

3/12

The safety-critical brainwashing S

Safety is here to ensure that the system “always works as expected”

m Correct is not enough. You need to prove it.

m Software!
= Hardware
= Tools (compilers)

= No dynamic memory allocation
= Proofreading the generated Assembly code

m Itis easier to prove that a bug has no consequence than to prove that a fix is correct
= Any change is a safety change
= All assumptions must be documented and checked at every level.

Safety people are paranoid freaks

But our planes and trains are incredibly safe.

4/12 1. Machine learning is going to be...interesting

The security brainwashing S

Security is here to ensure that the system “can't be used out of its purpose”
m Everything is an attack vector
= Any little hole is potentially a leap-frog to a whole exploit

m Security is arace

= Find the weakness before the malevolant

= Find a fix as fast as possible, temporary breakages are OK.
m Deploy as fast as possible.

= Embargoes are OK.

= The whole world is out to get you

Security people are paranoid freaks

But attacks are a real thing
and the security culture has measurable results

5/12

Safety and security : Compared cultures S

Safety ‘\ Security =

» Code must be proven and certified = Must react quickly to attack

6/12

Safety and security : Compared cultures S

Safety ‘\' Security =

» Code must be proven and certified = Must react quickly to attack
m Usage range is clearly defined m Must protect from hostile behaviours

6/12

Safety and security : Compared cultures S

Safety ‘\' Security =
» Code must be proven and certified = Must react quickly to attack
m Usage range is clearly defined m Must protect from hostile behaviours

= Bug likeliness goes down with time = Threat models evolve and adapt

6/12

Safety and security : Compared cultures

6/12

Safety ‘\‘

m Code must be proven and certified
m Usage range is clearly defined
m Bug likeliness goes down with time

= A known bug with no consequence
should be ignored

Security

>

m Must react quickly to attack
= Must protect from hostile behaviours
m Threat models evolve and adapt

= All bugs are potential exploits and
must be fixed

Safety and security : Compared cultures

<« Security =

» Code must be proven and certified Must react quickly to attack

= Usage range is clearly defined = Must protect from hostile behaviours

u Bug likeliness goes down with time = Threat models evolve and adapt

® A known bug with no consequence = All bugs are potential exploits and
should be ignored must be fixed

Always use the latest version

m Upgrade only as a last resort

6/12

Safety and security : Compared cultures

6/12

m Code must be proven and certified
m Usage range is clearly defined
m Bug likeliness goes down with time

= A known bug with no consequence
should be ignored

m Upgrade only as a last resort

Any change is a risk and
needs to be justified

Security

>

m Must react quickly to attack
= Must protect from hostile behaviours
m Threat models evolve and adapt

= All bugs are potential exploits and
must be fixed

m Always use the latest version
Any bug is a potential

security weakness and
needs to be fixed

Safety and security : Compared cultures

6/12

m Code must be proven and certified
m Usage range is clearly defined
m Bug likeliness goes down with time

= A known bug with no consequence
should be ignored

m Upgrade only as a last resort

Any change is a risk and
needs to be justified

Security

>

m Must react quickly to attack
= Must protect from hostile behaviours
m Threat models evolve and adapt
= All bugs are potential exploits and
must be fixed

m Always use the latest version

Any bug is a potential

security weakness and

needs to be fixed

Safety trumps everything else

Security trumps everything else

The particularities of embedded system : Upgrades

System upgrades in the embedded world
m Upgrades must be robust and deal with failures on their own
= No access to the product
Bad blocks
Conflicting configuration files
Invalid user configuration
Kernels need to be upgraded too...

7/12

The particularities of embedded system : Upgrades S

System upgrades in the embedded world
m Upgrades must be robust and deal with failures on their own

= No access to the product

= Bad blocks

= Conflicting configuration files

= Invalid user configuration

m Kernels need to be upgraded too...

= Some systems can't stop.

7/12

The particularities of embedded system : Upgrades S

System upgrades in the embedded world
m Upgrades must be robust and deal with failures on their own

= No access to the product

= Bad blocks

= Conflicting configuration files

= Invalid user configuration

m Kernels need to be upgraded too...

= Some systems can't stop.
= Old hardware can't be phased out

7/12

The particularities of embedded system : Upgrades S

System upgrades in the embedded world
m Upgrades must be robust and deal with failures on their own

= No access to the product

= Bad blocks

= Conflicting configuration files

= Invalid user configuration

m Kernels need to be upgraded too...

= Some systems can't stop.
= Old hardware can't be phased out
m Deployment time is controlled by the user

7/12

The particularities of embedded system : Upgrades

System upgrades in the embedded world
m Upgrades must be robust and deal with failures on their own

= No access to the product

= Bad blocks

= Conflicting configuration files

= Invalid user configuration

m Kernels need to be upgraded too...

= Some systems can't stop.
= Old hardware can't be phased out
m Deployment time is controlled by the user

m (Very) long term support

= You can't trust your subcontractors to survive
®m You can't trust your technologies to survive
= You can't trust your engineers to survive

7/12

The particularities of embedded system : Security

Security in the embedded world

m Physical access can't be restricted.

m Secure boot is a requirement
m Each product must have a unique key at factory-time
= You might need a unique image per product.

8/12

The particularities of embedded system : Security

Security in the embedded world

m Physical access can't be restricted.
m Secure boot is a requirement
m Each product must have a unique key at factory-time
= You might need a unique image per product.
= No return to a trusted state
= Bootloader attacks are a thing
m JTAG attacks are a thing
m ROM are expensive

8/12

The particularities of embedded system : Security

Security in the embedded world

m Physical access can't be restricted.

m Secure boot is a requirement
m Each product must have a unique key at factory-time
= You might need a unique image per product.

= No return to a trusted state
= Bootloader attacks are a thing
m JTAG attacks are a thing
m ROM are expensive

= No upgrade culture

= Ship and forget philosophy (hardware makers)
= No long term maintenance team (startup culture)

8/12

The particularities of embedded system : Security

Security in the embedded world

m Physical access can't be restricted.

m Secure boot is a requirement
m Each product must have a unique key at factory-time
= You might need a unique image per product.

= No return to a trusted state

= Bootloader attacks are a thing
m JTAG attacks are a thing
m ROM are expensive

= No upgrade culture

= Ship and forget philosophy (hardware makers)
= No long term maintenance team (startup culture)

You have to choose...

8/12

The particularities of embedded system : Security

Security in the embedded world

m Physical access can't be restricted.

m Secure boot is a requirement
m Each product must have a unique key at factory-time
= You might need a unique image per product.

= No return to a trusted state
= Bootloader attacks are a thing
m JTAG attacks are a thing
m ROM are expensive

= No upgrade culture

= Ship and forget philosophy (hardware makers)
= No long term maintenance team (startup culture)

You have to choose...
Bricked or Pwned?

8/12

How often should you publish security updates?

= "As needed’ is not realistic

Android Monthly security updates
Windows Monthly security updates
Linux Variable, but usually a rolling release. (Debian : automated daily updates)
I0S As needed (monthly)

= Monthly seems to be the current best-practice

9/12

How often should you publish security updates?

= "As needed’ is not realistic

Android Monthly security updates
Windows Monthly security updates
Linux Variable, but usually a rolling release. (Debian : automated daily updates)
I0S As needed (monthly)

= Monthly seems to be the current best-practice

Yes but...It takes more than a month to re-certify

9/12

How often should you publish security updates?

= "As needed’ is not realistic

Android Monthly security updates
Windows Monthly security updates
Linux Variable, but usually a rolling release. (Debian : automated daily updates)
I0S As needed (monthly)

= Monthly seems to be the current best-practice

Yes but...It takes more than a month to re-certify

Yes but... What about our vulnerability window ?

9/12

So... To summarize the problems

Both sides have very strict process requirements
m That are justified by years of good practices
= That need to be strictly followed to be effective
m That are effective at what they are meant to do

10/12

So... To summarize the problems

Both sides have very strict process requirements

m That are justified by years of good practices

= That need to be strictly followed to be effective

m That are effective at what they are meant to do
Those requirements are completely opposite

m Speed critical Vs Confidence critical

m Proactive Vs Reactive

m Preventive Vs Proven

10/12

So... To summarize the problems

Both sides have very strict process requirements

m That are justified by years of good practices

= That need to be strictly followed to be effective

m That are effective at what they are meant to do
Those requirements are completely opposite

m Speed critical Vs Confidence critical

m Proactive Vs Reactive

m Preventive Vs Proven

It is impossible to reconcile both sides.
Let's look at ways to mitigate the problem.

10/12

How to mitigate that problem S

You can't completely solve the problem... But you can mitigate
Avoid the problem entirely

= Not all products are safety critical, but all product need to care about security.
® You still need a robust upgrade system

11/12

How to mitigate that problem S

You can't completely solve the problem... But you can mitigate
Avoid the problem entirely

= Not all products are safety critical, but all product need to care about security.
® You still need a robust upgrade system

Accelerate re-certification

= Automated testing should be part of the certification.
= Have a fast-path in your re-certification process.
= Minimize the safety critical perimeter and update it separately

11/12

How to mitigate that problem S

You can't completely solve the problem... But you can mitigate
Avoid the problem entirely
= Not all products are safety critical, but all product need to care about security.
® You still need a robust upgrade system
Accelerate re-certification
= Automated testing should be part of the certification.
= Have a fast-path in your re-certification process.
= Minimize the safety critical perimeter and update it separately
Separate safety and security
= Containers
= Hypervisors
m Hardware separation

11/12

How to mitigate that problem S

You can't completely solve the problem... But you can mitigate
Avoid the problem entirely

= Not all products are safety critical, but all product need to care about security.
® You still need a robust upgrade system

Accelerate re-certification
= Automated testing should be part of the certification.
= Have a fast-path in your re-certification process.
= Minimize the safety critical perimeter and update it separately
Separate safety and security
= Containers
= Hypervisors
m Hardware separation
Plan for security updates
= Include an update agenda in your maintenence process
= Plan an End of Life for your products and document it

11/12

The End! 5=

Thank you'!
Questions?

12/12

