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A standard SoC architecture

• A complex IC that integrates multiples functional elements into 

a single chip

• Many embeds multiple heterogeneous processors

• Assets:
– Isolate functions on specialized and more efficient accelerators

– Increase performance

– Decrease power consumption

– Reduce over all cost

• Implies to manage shared resources
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Where do you find it?

• Mobile
– Modem (5G) / Application processor and GPU (Android)

• Ex: Mediatek Dimensity, Samsung Exynos…

• IoT gateway
– Connectivity (Ethernet, CAN, …) / Web gateway

• Ex: ST STM32MP1, NXP i.MX6, …

• AI
– Sensors (Camera) / AI (image recognition) / Web gateway

• Ex: Nvidia Xavier, …

• …
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What are shared resources?

• Exclusive resources: A peripheral clock, interrupt, 

reset,... which is assigned and controlled by an entity 

without conflict.

• Shared resources: central SoC resources shared by 

several processors or peripherals and so that can be 

used by several entities at the same time:

– GPIOs, regulators, clocks, resets,…

– Common registers banks (platform dependent)
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What are shared resources?

– For their own management:

• DVFS

• Power control

• …

– To manage their peripherals

• Runtime power optimization

• Reset

• …

Shared resources
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Shared resources in a SoC

• Ex: STM32MP1

Shared 
resources

Firmware 
sharing
resources
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Managed shared resources

• How to manage shared resources in such complex 

system?

– Dedicate a single entity that is responsible for the shared 

resources: a system controller.

– A system controller must centralize the global 

knowledge of the shared resources state.
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The system controller

• The system controller must follow some rules to properly 

managed shared resources:
– Reliability:

• Dedicated execution context

• Control and identify access to shared resources

– Flexibility:

• Must be adapted depending on the platform

• Must manage peripheral assignment changes depending on the executed use 

case

– Accessibility:

• Stable API: Standard interface to access the system controller



The SCMI Protocols:

Access to the 

system controller
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SCMI

• Arm® defined SCMI protocols (System Control and Management Interface)

Standard specification:
Defines messages exchanged

to discover and expose services

between a client (agent) and a

Server(platform).

Two layers:
- SCMI Protocols (Clocks, ….)

- SCMI Transport (Mailbox, …)
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SCMI

• Messages 
– Agent to Platform (A2P): request messages

– Platform to Agent (P2A): synchronous responses, notifications or delayed 
responses

• Channels:
– One or more dedicated channels per agent

– Standard channel: use to transmit exchange requests and responses 
between an agent and the system controller.

– FastChannel: Unidirectional channel specific to performance 
management protocol (low latency). 
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SCMI

• SCMI specifications version 3.0 is available:

– Linux kernel (v5.9) support SCMI 2.0:

• First introduced in v4.17 (early 2018)

• Clock, reset, power, performance, sensor

• Transport Mailbox

• SMC, Notifications: recently added in v5.9

– Change in 3.0:

• Voltage regulator, sensor extensions

– Next: QoS, …
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Possible integration schemes (1/3)

• System controller on a dedicated processor

– Ex: Arm® Juno:

• Dedicated Cortex-M3 with SCP firmware 

implementing SCMI server

– Control PMIC (regulators)

– Clock control, voltage, power gating

• Secure: independent execution context

• Increase SoC footprint (cost)

SCMI Server implementation
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Possible integration schemes (2/3)

• System controller on the application processor
– SCMI Virtualization support : SCMI Server in a dedicated VM

• Stratos: (https://projects.linaro.org/projects/STR)

SCMI Server implementation

https://projects.linaro.org/projects/STR
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Possible integration schemes (3/3)

• System controller on the application 

processor

– Ex: STM32MP15

• Cortex-A7 based

• TrustZone® usage

• Secure execution context

– Pros:

• Reduced SoC footprint

• Cost reduction

– Cons:

• Applicative processor becomes the 

master in the system

SCMI Server implementation



SCMI: STM32MP1 

implementation
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SCMI on STM32MP1

• Implementation overview:
– Messaging based on shared 

memory and SMC calls

– Shared resources accesses only by 

secure context

• Supported implementations:
– OP-TEE OS integration

– Trusted Firmware-A
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SCMI on STM32MP1: Clock sequence
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Linux kernel SCMI usage on STM32MP1

scmi_sram: sram@2ffff000 {

compatible = "mmio-sram";

reg = <0x2ffff000 0x1000>;

#address-cells = <1>;

#size-cells = <1>;

ranges = <0 0x2ffff000 0x1000>;

scmi0_shm: scmi_shm@0 {

reg = <0 0x80>;

};

};

firmware {

scmi0: scmi-0 {

compatible = "arm,scmi-smc";

#address-cells = <1>;

#size-cells = <0>;

arm,smc-id = <0x82002000>;

shmem = <&scmi0_shm>;

scmi0_clk: protocol@14 {

reg = <0x14>;

#clock-cells = <1>;

};

scmi0_reset: protocol@16 {

reg = <0x16>;

#reset-cells = <1>;

};

};

Shared memory definition SCMI channel description

Clock Protocol

Reset Protocol
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SCMI on STM32MP1

dsi: dsi@5a000000 {

compatible = "st,stm32-dsi";

reg = <0x5a000000 0x800>;

clocks = <&rcc DSI_K>, <&scmi0_clk CK_SCMI0_HSE>, <&rcc DSI_PX>;

clock-names = "pclk", "ref", "px_clk";

resets = <&rcc DSI_R>;

(...)

};

m4_rproc: m4@10000000 {

compatible = "st,stm32mp1-m4";

reg = <0x10000000 0x40000>,

<0x30000000 0x40000>,

<0x38000000 0x10000>;

resets = <&scmi0_reset RST_SCMI0_MCU>;

(…)

};

STM32MP15 DTS bindings using SCMI protocol
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Status on STM32MP1

• Current Status:
– Clocks, resets are fully implemented

– Possibility to embed SCMI server in OP-TEE or Trusted Firmware-A

– OP-TEE: SCMI server merged upstream

– TF-A: Merged in June 2020 (ready for v2.4)

– U-Boot: SCMI agent driver merged next for v2021.01

• Next steps:
– Regulators

– Performance

– Coprocessor SCMI agent for M4
• Current implementation is using another resource manager: 

http://openamp.github.io/docs/mca/remoteproc-resource-manager-overview.pdf

http://openamp.github.io/docs/mca/remoteproc-resource-manager-overview.pdf
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Links

• SCMI Specification: https://developer.arm.com/documentation/den0056/latest 

• STM32MP1 SCMI: https://wiki.st.com/stm32mpu/wiki/SCMI_on_STM32MP1

• Arm Juno: https://developer.arm.com/tools-and-software/development-boards/juno-
development-board

• TrustZone® : https://www.arm.com/why-arm/technologies/trustzone-for-cortex-a/tee-and-smc

• Arm SCP Firmware: https://github.com/ARM-software/SCP-firmware

• SCMI upstream:

https://github.com/OP-TEE/optee_os/tree/master/core/drivers/scmi-msg

https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/drivers/st/scmi-msg

https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-
next.git/tree/drivers/firmware/arm_scmi?h=next-20201013

• Logos are propriety of theirs respective owners
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https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/tree/drivers/firmware/arm_scmi?h=next-20201013
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