
Shared system resources on 

multi-processor system

Lionel DEBIEVE

#lfelc @twitterhandle



Lionel DEBIEVE

Software Engineer @ STMicroelectronics

• STM32 MPU development : STM32MP15

• Boot and Security focus

• Contributing to open source projects:

– Trusted Firmware A

– OP-TEE OS

– U-Boot

– Linux kernel (Crypto drivers)



#ossummit #lfelc

Agenda

• Multi-processor design

• Shared resources

• What are shared resources?

• Manage shared resources

• The SCMI protocols

• Description

• Associated implementations



Multi-processor 

design



#lfelc

A standard SoC architecture

• A complex IC that integrates multiples functional elements into 

a single chip

• Many embeds multiple heterogeneous processors

• Assets:
– Isolate functions on specialized and more efficient accelerators

– Increase performance

– Decrease power consumption

– Reduce over all cost

• Implies to manage shared resources



#lfelc

Where do you find it?

• Mobile
– Modem (5G) / Application processor and GPU (Android)

• Ex: Mediatek Dimensity, Samsung Exynos…

• IoT gateway
– Connectivity (Ethernet, CAN, …) / Web gateway

• Ex: ST STM32MP1, NXP i.MX6, …

• AI
– Sensors (Camera) / AI (image recognition) / Web gateway

• Ex: Nvidia Xavier, …

• …



Shared resources



#ossummit #lfelc

What are shared resources?

• Exclusive resources: A peripheral clock, interrupt, 

reset,... which is assigned and controlled by an entity 

without conflict.

• Shared resources: central SoC resources shared by 

several processors or peripherals and so that can be 

used by several entities at the same time:

– GPIOs, regulators, clocks, resets,…

– Common registers banks (platform dependent)



#ossummit #lfelc

What are shared resources?

– For their own management:

• DVFS

• Power control

• …

– To manage their peripherals

• Runtime power optimization

• Reset

• …

Shared resources

Peripheral 2

Registers

Peripheral 1

Registers
Processor

1
Processor 

3

Interconnect

Clocks Reset Power Interrupt IOsMemories SensorsQoS Bus

• Shared resources are used by CPUs:

Processor
2

FPGA



#ossummit #lfelc

Shared resources in a SoC

• Ex: STM32MP1

Shared 
resources

Firmware 
sharing
resources



#ossummit #lfelc

Managed shared resources

• How to manage shared resources in such complex 

system?

– Dedicate a single entity that is responsible for the shared 

resources: a system controller.

– A system controller must centralize the global 

knowledge of the shared resources state.



#ossummit #lfelc

The system controller

• The system controller must follow some rules to properly 

managed shared resources:
– Reliability:

• Dedicated execution context

• Control and identify access to shared resources

– Flexibility:

• Must be adapted depending on the platform

• Must manage peripheral assignment changes depending on the executed use 

case

– Accessibility:

• Stable API: Standard interface to access the system controller



The SCMI Protocols:

Access to the 

system controller



#ossummit #lfelc

SCMI

• Arm® defined SCMI protocols (System Control and Management Interface)

Standard specification:
Defines messages exchanged

to discover and expose services

between a client (agent) and a

Server(platform).

Two layers:
- SCMI Protocols (Clocks, ….)

- SCMI Transport (Mailbox, …)



#ossummit #lfelc

SCMI

• Messages 
– Agent to Platform (A2P): request messages

– Platform to Agent (P2A): synchronous responses, notifications or delayed 
responses

• Channels:
– One or more dedicated channels per agent

– Standard channel: use to transmit exchange requests and responses 
between an agent and the system controller.

– FastChannel: Unidirectional channel specific to performance 
management protocol (low latency). 



#ossummit #lfelc

SCMI

• SCMI specifications version 3.0 is available:

– Linux kernel (v5.9) support SCMI 2.0:

• First introduced in v4.17 (early 2018)

• Clock, reset, power, performance, sensor

• Transport Mailbox

• SMC, Notifications: recently added in v5.9

– Change in 3.0:

• Voltage regulator, sensor extensions

– Next: QoS, …



#ossummit #lfelc

Possible integration schemes (1/3)

• System controller on a dedicated processor

– Ex: Arm® Juno:

• Dedicated Cortex-M3 with SCP firmware 

implementing SCMI server

– Control PMIC (regulators)

– Clock control, voltage, power gating

• Secure: independent execution context

• Increase SoC footprint (cost)

SCMI Server implementation



#ossummit #lfelc

Possible integration schemes (2/3)

• System controller on the application processor
– SCMI Virtualization support : SCMI Server in a dedicated VM

• Stratos: (https://projects.linaro.org/projects/STR)

SCMI Server implementation

https://projects.linaro.org/projects/STR


#ossummit #lfelc

Possible integration schemes (3/3)

• System controller on the application 

processor

– Ex: STM32MP15

• Cortex-A7 based

• TrustZone® usage

• Secure execution context

– Pros:

• Reduced SoC footprint

• Cost reduction

– Cons:

• Applicative processor becomes the 

master in the system

SCMI Server implementation



SCMI: STM32MP1 

implementation



#ossummit #lfelc

SCMI on STM32MP1

• Implementation overview:
– Messaging based on shared 

memory and SMC calls

– Shared resources accesses only by 

secure context

• Supported implementations:
– OP-TEE OS integration

– Trusted Firmware-A

Cortex-A7 Secure (TZ) Cortex-A7 Non-Secure

P
L
0

P
L
1

Application 

frameworks

U
s

e
r

s
p

a
c
e

L
in

u
x
 K

e
rn

e
l

s
p

a
c
e

OP-TEE OS

/

Trusted Firmware-A

Linux 

Applications

Trusted 

Applications

S
e

c
u

re
 O

S

P
L

2

U
s

e
r

s
p

a
c
e

Clock 

framework

Reset 

framework

Regulator 

framework

SCMI driver

SMC handler

SMC 

Transport

Mailbox 

Transport

SCMI Server

RCC driver PWR driver PMIC driver
SCMI Clock 

driver

SCMI Reset 

driver

SCMI voltage

driver

SCMI 

Clock

SCMI

Power 

domain

SCMI 

Reset

PL: Privilege Level; PMIC: Power Management Integrated Circuit; SMC: Secure Monitor Call



#ossummit #lfelc

SCMI on STM32MP1: Clock sequence



#ossummit #lfelc

Linux kernel SCMI usage on STM32MP1

scmi_sram: sram@2ffff000 {

compatible = "mmio-sram";

reg = <0x2ffff000 0x1000>;

#address-cells = <1>;

#size-cells = <1>;

ranges = <0 0x2ffff000 0x1000>;

scmi0_shm: scmi_shm@0 {

reg = <0 0x80>;

};

};

firmware {

scmi0: scmi-0 {

compatible = "arm,scmi-smc";

#address-cells = <1>;

#size-cells = <0>;

arm,smc-id = <0x82002000>;

shmem = <&scmi0_shm>;

scmi0_clk: protocol@14 {

reg = <0x14>;

#clock-cells = <1>;

};

scmi0_reset: protocol@16 {

reg = <0x16>;

#reset-cells = <1>;

};

};

Shared memory definition SCMI channel description

Clock Protocol

Reset Protocol



#ossummit #lfelc

SCMI on STM32MP1

dsi: dsi@5a000000 {

compatible = "st,stm32-dsi";

reg = <0x5a000000 0x800>;

clocks = <&rcc DSI_K>, <&scmi0_clk CK_SCMI0_HSE>, <&rcc DSI_PX>;

clock-names = "pclk", "ref", "px_clk";

resets = <&rcc DSI_R>;

(...)

};

m4_rproc: m4@10000000 {

compatible = "st,stm32mp1-m4";

reg = <0x10000000 0x40000>,

<0x30000000 0x40000>,

<0x38000000 0x10000>;

resets = <&scmi0_reset RST_SCMI0_MCU>;

(…)

};

STM32MP15 DTS bindings using SCMI protocol



#ossummit #lfelc

Status on STM32MP1

• Current Status:
– Clocks, resets are fully implemented

– Possibility to embed SCMI server in OP-TEE or Trusted Firmware-A

– OP-TEE: SCMI server merged upstream

– TF-A: Merged in June 2020 (ready for v2.4)

– U-Boot: SCMI agent driver merged next for v2021.01

• Next steps:
– Regulators

– Performance

– Coprocessor SCMI agent for M4
• Current implementation is using another resource manager: 

http://openamp.github.io/docs/mca/remoteproc-resource-manager-overview.pdf

http://openamp.github.io/docs/mca/remoteproc-resource-manager-overview.pdf


#ossummit #lfelc

Links

• SCMI Specification: https://developer.arm.com/documentation/den0056/latest 

• STM32MP1 SCMI: https://wiki.st.com/stm32mpu/wiki/SCMI_on_STM32MP1

• Arm Juno: https://developer.arm.com/tools-and-software/development-boards/juno-
development-board

• TrustZone® : https://www.arm.com/why-arm/technologies/trustzone-for-cortex-a/tee-and-smc

• Arm SCP Firmware: https://github.com/ARM-software/SCP-firmware

• SCMI upstream:

https://github.com/OP-TEE/optee_os/tree/master/core/drivers/scmi-msg

https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/drivers/st/scmi-msg

https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-
next.git/tree/drivers/firmware/arm_scmi?h=next-20201013

• Logos are propriety of theirs respective owners

https://developer.arm.com/documentation/den0056/latest
https://wiki.st.com/stm32mpu/wiki/SCMI_on_STM32MP1
https://developer.arm.com/tools-and-software/development-boards/juno-development-board
https://www.arm.com/why-arm/technologies/trustzone-for-cortex-a/tee-and-smc
https://github.com/ARM-software/SCP-firmware
https://github.com/OP-TEE/optee_os/tree/master/core/drivers/scmi-msg
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/drivers/st/scmi-msg
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/tree/drivers/firmware/arm_scmi?h=next-20201013


Thank you!




