
© 2017 Arm Limited

Gilad Ben-Yossef
gilad@benyossef.com

Twitter: @giladby

Protecting your
system from the
scum of the
universe

© 2017 Arm Limited 2

About me
My name is Gilad Ben-Yossef.

I work on applied cryptography and security of the upstream Linux kernel in general and
maintain the arm® TrustZone® CryptoCell® Linux device driver.

I have been working in various forms with and on the Linux kernel and other Open Source
projects for close to twenty years.

I have co-authored “Building Embedded Linux Systems” 2nd edition from O’Reilly.

I’m a co-founder of HaMakor, an Israeli NPO for free and open source software and of
August Penguin, the longest running Israeli FOSS conference.

© 2017 Arm Limited 3

© 2017 Arm Limited 4

Problem Definition

We use smart devices for everything

…and therefore need to trust them.

© 2017 Arm Limited 5

What does “Trust” mean?

We want secure devices:

• Keep our secrets

• Serve us, not malicious strangers

We also want:

• Connected devices

• Frictionless user experience

• Open ended devices

© 2017 Arm Limited 6

A “Trusted” way of failing

• What do we want?

• If someone got hold of our device, we don’t them to have access to (all)
our secrets

• If someone broke in, we don’t want them to be able to leverage this to
gain access to additional resources we have access to.

• If unauthorized changes occurred, we want to know about it.

• If someone broke in, we don’t want them to take hold.

• The threat model of dealing with a malicious entity
getting a temporary hold of our device:

• Evil government agent getting hold of our device during customs
inspection

• Malware being run on our device

© 2017 Arm Limited 7

How to build such a system?

Secure Boot

File System Integrity Verification (DM-Verity)

Full Disk Encryption (DM-Crypt)

File Based Encryption (Fscrypt)

Trusted Execution Environment

Trusted Platform Module

Integrity Measurement Architecture

How it all fits together

© 2017 Arm Limited 8

Secure Boot* Sequence

The quotes are from taken from https://source.android.com/security/verifiedboot/verified-boot on . 8/5/2017 under the Creative Commons Attribution 3.0 License

“Bootloader integrity is always verified
using a hardware root of trust.”

Firmware verifies the boot loader1

1

“For verifying boot and recovery partitions,
the bootloader has a fixed OEM key available
to it. It always attempts to verify the boot
partition using the OEM key.”

Boot loader verifies kernel
image and boot file system

2

2

“Once execution has moved to the boot
partition, the software there is responsible for
setting up verification of further partitions.
Due to its large size, the system partition
typically cannot be verified similarly to
previous parts but is verified as it’s being
accessed instead using the dm-verity kernel
driver or a similar solution.”

OS verifies the system and
additional partitions

3

3

* Android style

https://source.android.com/security/verifiedboot/verified-boot on . 8/5/2017
http://creativecommons.org/licenses/by/3.0/

© 2017 Arm Limited 9

Verified Boot (AKA DM-Verity)

Linux Device-Mapper's "verity" target provides transparent integrity checking of
read only block devices.

DM-verity helps prevent persistent rootkits that can hold onto root privileges and
compromise devices.

The DM-verity feature lets you look at a block device, the underlying storage layer
of the file system, and determine if it matches its expected configuration.

© 2017 Arm Limited 10

How does DM-Verity work?

DM-verity uses a Merkle tree of storage blocks to protect the integrity of the read only
data on the storage device, in a way that the integrity can be evaluated in a lazy fashion
during runtime instead of pre-mount time.

It needs a singular trusted root hash to achieve security

Another type of Merkle tree

© 2017 Arm Limited 11

Simple dm-verity setup example

veritysetup format filesystem.img signature.img

veritysetup create vroot fs.img sig.img \

ffa0a985fd78462d95c9b1ae7c9e49…10e4700058b8ed28

mount -t ext2 /dev/mapper/vroot /media/

umount /media

veritysetup remove vroot

This examples uses SHA 256 to protect the integrity of the loopback file
system provided the root hash is secure.

© 2017 Arm Limited 12

Full Disk Encryption (A.K.A DM-Crypt)

Transparent whole disk (read: partition) encryption scheme in device mapper.

Support advanced modes of operation, such as XTS, LRW and ESSIV.

It is used by Android devices to implement Full Disk Encryption.

Can also supply data integrity if used in conjunction with DM-Integrity and an AEAD.

© 2017 Arm Limited 13

Simple DM-Crypt setup example

cryptsetup luksFormat fs3.img

cryptsetup open --type luks fs3.img croot

mke2fs /dev/mapper/croot

mount -t ext2 /dev/mapper/croot /media

umount /media/

cryptsetup close croot

This examples uses AES in XTS operating mode to protect a loopback
mounted partition file.

© 2017 Arm Limited 14

Example Simple System Setup

• Each stage verifies the next stage

• The public key may actually be a hash of the public key supplied later in the chain.

• There may be a chain of public keys, each signed by the previous (Chip  SoC  OEM)

• There may be multiple kernel and app file systems for ease of upgrade.

Boot Loader Kernel

App File system

Data File System

Signature Signature

Signed DM-Verity root hash

Encryption (and authentication) Key

DM-Verity
Hash tree

Integrity
data

Boot ROM

Public Key

Firmware

Signature

ROM DM-Verity

DM-Crypt

Verify Verify Verify

© 2017 Arm Limited 15

File System Based Encryption (fscrypt)

File system based encryption provides encryption at the file system level, as
opposed to block level of DM-Crypt.

Each directory may be separately and optionally encrypted with a different
key.

Currently supported by the EXT4, UBIFS and F2FS file systems.

Allows multi level, multi user based protection, e.g. solution to Android
“alarm clock” problem.

Designed to protect against “Occasional temporary offline compromise of the
block device content, where loss of confidentiality of some file metadata,
including the file sizes, and permissions, is tolerable.”*

• Currently, file data and file names are encrypted but other file meta data (e.g. size and permissions) are not.

* From: “EXT4 Encryption” by Mike Halcrow & Ted Ts’o presentation; http://kernsec.org/files/lss2014/Halcrow_EXT4_Encryption.pdf

http://kernsec.org/files/lss2014/Halcrow_EXT4_Encryption.pdf

© 2017 Arm Limited 16

File system based encryption setup example
Make a random 512-bit key and store it in a file

> dd if=/dev/urandom of=key.data count=64 bs=1

Get the descriptor for the key

> ./fscryptctl get_descriptor < key.data

cd8c77009a9a3e6d

Insert the key into the keyring (using legacy ext4 options)

> ./fscryptctl insert_key --ext4 < key.data

cd8c77009a9a3e6d

> keyctl show

Session Keyring

827244259 --alswrv 416424 65534 keyring: _uid_ses.416424

111054036 --alswrv 416424 65534 _ keyring: _uid.416424

227138126 --alsw-v 416424 5000 _ logon: ext4:cd8c77009a9a3e6d

Make a test directory on a filesystem that supports encryption

> mkdir /mnt/disks/encrypted/test

Setup an encryption policy on that directory

> ./fscryptctl set_policy cd8c77009a9a3e6d /mnt/disks/encrypted/test

> ./fscryptctl get_policy /mnt/disks/encrypted/test

Encryption policy for /mnt/disks/encrypted/test:

Policy Version: 0

Key Descriptor: cd8c77009a9a3e6d

Contents: AES-256-XTS

Filenames: AES-256-CTS

Padding: 32

Copyright 2017 Google Inc. under the Apache 2.0 License; Copyright 2017 Google Inc. under the Apache 2.0 License; Source: https://github.com/google/fscryptctl

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/google/fscryptctl

© 2017 Arm Limited 17

File system based encryption usage example
Now we can make the file and write data to it

> echo "Hello World!" > /mnt/disks/encrypted/test/foo.txt

> ls -lA /mnt/disks/encrypted/test/

total 4

-rw-rw-r-- 1 joerichey joerichey 12 Mar 30 20:00 foo.txt

> cat /mnt/disks/encrypted/test/foo.txt

Hello World!

Now we remove the key, remount the filesystem, and see the
encrypted data

> keyctl show

Session Keyring

1047869403 --alswrv 1001 1002 keyring: _ses

967765418 --alswrv 1001 65534 _ keyring: _uid.1001

1009690551 --alsw-v 1001 1002 _ logon: ext4:cd8c77009a9a3e6d

> keyctl unlink 1009690551

1 links removed

> umount /mnt/disks/encrypted

> mount /mnt/disks/encrypted

> ls -lA /mnt/disks/encrypted/test/

total 4

-rw-rw-r-- 1 joerichey joerichey 13 Mar 30 20:00
wnJP+VX33Y6OSbN08+,jtQXK9yMHm8CFcI64CxDFPxL

> cat
/mnt/disks/encrypted/test/wnJP+VX33Y6OSbN08+,jtQXK9yMHm8CFcI64
CxDFPxL

cat:
/mnt/disks/encrypted/test/wnJP+VX33Y6OSbN08+,jtQXK9yMHm8CFcI64
CxDFPxL: Required key not available

Copyright 2017 Google Inc. under the Apache 2.0 License; Copyright 2017 Google Inc. under the Apache 2.0 License; Source: https://github.com/google/fscryptctl

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/google/fscryptctl

© 2017 Arm Limited 18

The TEE is an isolated environment that runs in
parallel with the operating system, providing security
for the rich environment.

A TEE relies on hardware isolation mechanisms, such
as Arm’s TrustZone, Intel SGX or AMD SEE.

The TEE is intended to be more secure than the user-
facing OS, dubbed Rich Execution Environment due to
smaller attack surface, although this is not always the
case.

TEE is supposed to run software that interacts with
secrets (such as encryption keys) and provide services
to the normal OS without the secrets being available.

Trusted Execution Environment

© 2017 Arm Limited 19

Trusted Execution Env
TrustZone Secure world

Rich Execution Env
Linux

Master keys
blob

Internal Storage

HW Key

User credentials

Encrypted Data

AES-256-GCM
Device key

User key

Meta Data

File

Encrypted
Name

Kernel Key Store
Random Nonce

AES-128-ECB

File Key

AES-256-XTS

Clear text
File Data

Setup time
i.e. boot, user or profile
switch

Run time

AES-256-CTS

Clear text
File Name

Android File Based Encryption (based on fscrypt)

© 2017 Arm Limited 20

Trusted Platform Module (TPM) is an international standard
for a secure crypto processor, which is a dedicated
microcontroller designed to secure hardware by integrating
cryptographic keys into devices.

TPMs offers facilities for the secure generation of
cryptographic keys, and limitation of their use

It also includes capabilities such as remote attestation and
sealed storage:

• Remote attestation – creates hashes of the hardware and software
configuration.

• Binding – encrypts data using TPM specific key.

• Sealing – same as binding, but in addition specifies a state in which TPM must
be, in order for the data to be decrypted (unsealed).

Trusted Platform Module

This figure was made by Guillaume Piolle. It is based on work by released by Everaldo
Coelho and YellowIcon under the terms of the LGPL.

Source: https://en.wikipedia.org/wiki/Trusted_Platform_Module#/media/File:TPM.svg

https://en.wikipedia.org/wiki/Trusted_Platform_Module#/media/File:TPM.svg

© 2017 Arm Limited 21

Integrity Measurement Architecture

Integrity Measurement Architecture, or IMA,
is a Linux sub-system which provides runtime
attestation services.

Working in conjunction with the TPM, it
allows us to:

• Measure the system run-time state

• Attest to the system reliability, locally and
remotely.

• Allow certain actions only if the state is as
predicted.

“Attestation” simply means giving
evidence of your reliability, just like
the example above.

© 2017 Arm Limited 22

IMA

How does IMA work?

IMA hashes all executables being run and all files opened by root and writes these hashes
into the TPM PCR registers.

Together with similar service that do the same for hardware and software state during
boot, we get a cryptographic hash representing the state of the whole system.

Boot Loader Kernel All executed binariesBoot ROM Firmware Any file opened by root

Hash

© 2017 Arm Limited 23

This allows the TPM to only unseal (read: allow to use) certain keys if the system
state captured by the TPM is as expected.

This allows local and remote attestation of the system state, that is take action
only if the system is in a Known Good State™.

The IMA is further extended by a Linux Security Module known as EVM to allow
certain Linux operations (e.g. running a specific binary) only if the TPM attested
system state is as expected.

How IMA can be used to protect a system?

Why, I feel safe already ☺

2424

Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!

© 2017 Arm Limited

Gilad Ben-Yossef
gilad@benyossef.com
@giladby

2525 © 2017 Arm Limited

The Arm trademarks featured in this
presentation are registered trademarks or
trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All
rights reserved. All other marks featured may
be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

