o

‘-

The Orc Quest for Better
Multimedia Performance

Adding Mips support to liborc

Guillaume Emont - Software Engineer
|galia
ELCE 2014 - Monday, October 13 2014



Some Context

What is SISD?

SISD: Single Instruction Single Data

lbu $2,
lbu $3,
addu $2,
sb  $2,

variablel
variable2
$2, $3

variable3

’

’

’

’

» $2 <- variablel
» $3 <- variable2
» $2 <- $2 + $3

» variable3 <- $2

variable3 <- variablel + variable2

ASM

PSEUDO-CODE

2/28



Some Context
What is SIMD?

SIMD: Single Instruction Multiple Data

lw $2, arrayl ; $2 <- arrayl[0..3] ASM
lw $3, array2 ; $3 <- array2[0..3]
addu.gb $2, $2, $3 ; $2[1] <- $2[i] + $3[i] for i in 0..3

-

Sw $2, array3

array3 <- arrayl + array2 PSEUDO-CODE

array3[0..3] <- $2

3/28



Some Context
SIMD use cases

+colorspace conversion (e.g. YUV -> RGB, etc)

- image scaling

- blending two videos feeds together

+various audio processing (volume, combine 2 sources, etc)

4/28



Some Context
Orc

The Oil Runtime Compiler
OIL: Optimized Inner Loops
"Portable SIMD"

5/28



Some Context
Orc

This ORC code

.function simple addb ORC

.dest 1 dl
.source 1 sl
.source 1 s2
addb dl, sl, s2

Will give you this C function

void simple addb (orc uint8 * ORC RESTRICT dl,
const orc uint8 * ORC RESTRICT sl
const orc uint8 * ORC RESTRICT s2,
int n);

6/28



Some Context
Orc

$ orcc addb.orc --assembly --target mips -o addb-mips.s
$ wc -1 addb-mips.s
414 addb-mips.s

7/28



MIPS port
MIPS DSPv2 ASE

DSPv2 ASE provides:

+saturating arithmetics
- simple SIMD instructions (32 bits registers)
+ fixed point arithmetic

8/28



MIPS port
MIPS DSPv2 ASE

Port is only for the DSPv2 ASE, and not for:

- MIPS SIMD Architecture (MSA)
- MIPS-3D
- MDMX

9/28



MIPS port
MIPS DSPv2 ASE

| used a MIPS32 74Kc

10/28



MIPS port

What's in a port?

+ simple instruction builder
+ rules
+ program manager

11/28



MIPS port

What's in a port?

Simple instruction builder aka orcmips.{h,c}

+ enum of available registers
+orc_mips_emit_<instruction>()
+ some logic to handle labels and jumps

Can generate assembly source code or binary code.

12/28



MIPS port

What's in a port?

Rules (orcrules-mips.c): convert ORC opcode to binary code.

Example:

void

mips rule addb (OrcCompiler compiler, void user, OrcInstruction *insn)

{

int srcl
int src2
int dest

orc mips emit addu gb (compiler, dest, srcl, src2);

}

ORC SRC ARG (compiler, insn, 0);

= ORC SRC ARG (compiler, insn, 1);

ORC DEST ARG (compiler, insn, 0);

13/28



MIPS port

What's in a port?

Program manager
Constructs the whole "program” ( = binary function)

push registers on stack

load constants and parameters into registers
+ try to do some simple optimisations (load ordering)
- stride handling
+ Creates the many loops that are needed

14/28



MIPS port

Many loops

Many loops:

+ 2(n-1) alignment cases with (h=number of arrays)
+in case array is big: loop unrolling
- array end might not be aligned

15/28



MIPS port

Many loops

Alignment issues

This is only fine if $a1 is a multiple of 4

lw $t0, 0(s%al) ASM

If not:

lwr $t0, 0(%al) ASM
wl $t0, 3(%$al)

We want to be in the first case as much as possible.

16/28



MIPS port
Many loops

.function simple addb ORC
.dest 1 dl

.source 1 sl

.source 1 s2

addb dl1, sl, s2

17/28



MIPS port

Many loops

Really:

.function simple addb ORC

.dest 1 dl
.source 1 sl
.source 1 s2
.temp 1 t1
.temp 1 t2
loadb t1, sl
loadb t2, s2
addb t1, t1, t2
storeb sl, tl

18/28



MIPS port
Many loops

Everything aligned:

/ 0: loadb /
lw $t7, 0(%$a3)
/ 1: loadb /
lw $t6, 0(%$a2)
/ 2: addb /
addu.gb $t6, $t6, $t7
/ 3: storeb /
Sw $t6, 0(%$al)

ASM

19/28



MIPS port

Many loops

If one is not aligned:

/ 0: loadb / ASM
lwr $t7, 0(%$a3)
1wl $t7, 3(%$a3)
/ 1: loadb /
w $t6, 0(%a2)
/ 2: addb /
addu.gb $t6, $t6, $t7
/ 3: storeb /
sw $t6, 0(%$al)

20/28



MIPS port

Many loops

Strategy:

+ Make sure we are aligned for at least d1
-+ One loop for each possible alignment configuration for (s1, s2)

21/28



MIPS port
Many loops

Loops we generate:

- byte by byte until d1 is aligned.

Then, loops for d1 aligned:

-+ s1 aligned, s2 not aligned.
+ 51 not aligned, s2 aligned.
- everything aligned.

+ neither s1 nor s2 aligned.

Finally:

- another byte by byte loop to finish processing if the arrays did not finish on an

alignment border for d1.

22/28



MIPS port
Many loops

Loops we generate:
- byte by byte until d1 is aligned.
Then, loops for d1 aligned:

-+ s1 aligned, s2 not aligned. Unrolled 8 times
+ s1 not aligned, s2 aligned. Unrolled 8 times
- everything aligned. Unrolled 8 times

+ neither s1 nor s2 aligned. Unrolled 8 times

Finally:

+another byte by byte loop to finish processing if the arrays did not finish on an
alignment border for d1.

23/28



MIPS port
Many loops

Overall algorithm of generated code

Load parameters

Calculate number of iterations needed to have dl aligned
. Loop until d1 is aligned

Check alignment of the other array pointers

Go to loop corresponding to our alignment configuration
. Iterate in said loop

Iterate in "left-over" loop

N O Ul B WN

24/28



MIPS port

Many loops

Overall algorithm of generated code

. Load parameters -> 5 lines

Calculate number of iterations needed to have dl aligned -> 15 lines
Loop until d1 is aligned -> 15 lines

Check alignment of the other array pointers }

Go to loop corresponding to our alignment configuration } 22 lines
Iterate in said loop -> ~80 lines x 4 -> 320 lines

Iterate in "left-over" loop -> 15 lines

N O U B W N

Total: ~ 392

Add 22 lines of boilerplate and you know why it takes 414 lines of MIPS assembly
to efficiently add two arrays byte by byte.

25/28



Some conclusions

$ wc -1 orcmips.{h,c} orcprogram-mips.c orcrules-mips.c
209 orcmips.h
961 orcmips.c
872 orcprogram-mips.c
733 orcrules-mips.c
2775 total

26/28



Some conclusions

A lot is already handled by the core of Orc:

+ register allocation

+ (part of) label management

+ parameter passing convention

+ generation of wrapping function

27128



<Thank You!>

http://www.igalia.com/

twitter @guijemont
www emont.org/blog
github github.com/guijemont

&


http://twitter.com/@guijemont
http://emont.org/blog
http://github.com/guijemont

