
Embedded Linux Conference 2016

Using DT overlays to support the C.H.I.P.’s
capes

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 1/52



Antoine Ténart

I antoine.tenart@free-electrons.com
I Embedded Linux engineer at Free Electrons.

I Embedded Linux specialists.
I Development, consulting and training (materials freely available under a Creative

Commons license).
I http://free-electrons.com

I Contributions
I Kernel support for the Marvell Berlin ARM SoCs.
I Kernel support for the Annapurna Labs ARM64 Alpine v2 platform.

I Living in Toulouse, south west of France.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 2/52

http://free-electrons.com


Context

Overview

The 1-wire bus

Introduction to Device Tree Overlays
Example: the base tree
Example: the overlay
phandle resolution

Applying a Device Tree Overlay

The cape manager

Current status

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 3/52



What is this talk about?

I Giving an overview of how to handle capes in the kernel, and describing the
requirements.

I Describing the solution we went for.

I Digging into the different parts of our solution.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 4/52



Context

Context
Antoine Ténart

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 5/52



Context: the CHIP, the capes and us

I The CHIP: a 9$ board by NextThing
Co. built around the Allwinner R8
SoC (Cortex-A8).

I Funded thanks to a Kickstarter
campaign in 2015.

I Free Electrons working on the CHIP
kernel support.

I Was designed from the beginning to
have adapters:

I VGA adapter.
I HDMI adapter.
I Pocket CHIP.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 6/52



The CHIP expander

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 7/52



Cape definition & benefits

I An adapter to extend board functionalities.

I Some I/Os are muxable: different capes for different usages!

I Prototype development made easy.

I DIY projects.

I Everyone can design and sell his own capes.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 8/52



Requirements

I Capes can be changed.
I Not a finite set of capes.

I The capes need to be auto-detected at boot time.

I Capes can be stacked.
I The auto-detection mechanism should be able to enumerate the capes.

I This should work without the user intervention!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 9/52



Overview

Overview
Antoine Ténart

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 10/52



The header

I Used to organize the cape’s description.

I Needs a magic value to differentiate it from random data.

I Capes can have different versions or revisions.

I Allows each cape to store specific data.
I This header is stored in an onboard EEPROM.

I Easy to read from / write to.
I Cheap.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 11/52



The header format

struct cape_chip_header {

u32 magic; /* must be 0x43484950 "CHIP" */

u8 version; /* spec version */

u32 vendor_id;

u16 product_id;

u8 product_version;

char vendor_name[32];

char product_name[32];

u8 rsvd[36]; /* rsvd for future versions */

u8 data[16]; /* per-cape specific */

} __packed;

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 12/52



Cape identification

I Each pin used to communicate to the EEPROM cannot be reused:
I We wanted a bus with the lowest number of lines.

I We did not need a high speed bus:
I Only used to read the cape’s header.

I The bus must support enumeration, to connect more than one cape.

I We chose the 1-wire bus.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 13/52



Kernel hardware description

I The CHIP is based on an ARM Cortex-A8.

I The hardware description is now done with Device Trees in the upstream kernel,
for ARM based boards.

I Describe the SoC IPs, and which ones to enable (and configure) for a given board.
I The proper solution would be to modify this device tree.

I This can be done with device tree overlays!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 14/52



The 1-wire bus

The 1-wire bus
Antoine Ténart

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 15/52



Overview

I Single signal.

I Low-speed data and signaling.
I Only two wires needed:

I Data.
I Ground.

I Uses a capacitor to store charge and power the device when the data line is active.

I The capacitor needs to be charged!
I We had weird side effects because of this in U-Boot � the line needs to be pulled

long enough firstly.

I Two speed modes: normal and overdrive (speed x10).

I Four operations: read, write 0, write 1 and reset.
I Can be used over a GPIO.

I drivers/w1/master/w1-gpio.c

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 16/52

http://lxr.free-electrons.com/source/drivers/w1/master/w1-gpio.c


Read operation

1. Drive the bus low.

2. Wait 6µs.

3. Release the bus.

4. Wait 9µs.

5. Sample the bus to read the bit send by
the slave.

6. Wait 55µs.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 17/52



Write operation

I To write 0:

1. Drive the bus low.
2. Wait 60µs.
3. Release the bus.
4. Wait 10µs.

I To write 1:

1. Drive the bus low.
2. Wait 6µs.
3. Release the bus.
4. Wait 64µs.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 18/52



Reset operation

Reset the bus slave devices and ready them for a command.

1. Drive the bus low.

2. Wait 480µs.

3. Release the bus.

4. Wait for 70µs.

5. Sample the bus:
I 0: one or more slave devices present.
I 1: no slave device present.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 19/52



Slave devices numeration

I Each devices have a 64-bit unique identifier.

I Used to address them individually by the master.

I Binary tree search.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 20/52



Kernel support

I drivers/w1

I Not actively maintained.
I No interface to the 1-wire framework.

I Slave drivers should be in drivers/w1/slaves
I Difficult to use the bus from outside the subsystem.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 21/52

http://lxr.free-electrons.com/source/drivers/w1
http://lxr.free-electrons.com/source/drivers/w1/slaves


Introduction to Device Tree Overlays

Introduction to Device
Tree Overlays
Antoine Ténart

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 22/52



Overview

I The device tree is a data structure.

I It’s organized as a tree: there are nodes.

I Not aimed to be generated dynamically.

I Loaded at boot time by the bootloader, or embedded in the kernel image.

I Nice for describing a SoC or a board. . . but not suitable for hot-pluggable stuff.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 23/52



Device Tree Overlays

I Allows modification of the device tree at runtime:
I To add a node.
I To modify a property.

I Not persistent across reboots.
I Examples:

I Turn on or off an hardware block by updating a node status property.
I Modifying the pinmux.
I Adding a hardware controller description.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 24/52



Upstream status

I In-kernel support: CONFIG_OF_DYNAMIC.

I No U-Boot support (at the time of writing). . . but patches sent while in the plane
on our way to ELC :-)

I DTC (device tree compiler) needs a patch to enable dynamic phandle resolution.
I Required to use device tree overlays.
I Still not available upstream.
I This means the one used by the kernel build system cannot handle overlays!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 25/52



Overlay example: adding a new node

/dts-v1/;

/plugin/;

/ {

compatible = "nextthing,chip","allwinner,sun5i-r8";

fragment@0 {

target-path = "/soc@01c00000";

__overlay__ {

leds {

compatible = "gpio-leds";

pinctrl-names = "default";

pinctrl-0 = <&chip_test_led>;

led0 {

label = "Test led";

gpios = <&pio 3 4 0>; /* PD4 */

default-state = "on";

};

};

};

};

};

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 26/52



Overlay example: modifying a property

/dts-v1/;

/plugin/;

/ {

compatible = "nextthing,chip","allwinner,sun5i-r8";

fragment@0 {

target = <&mmc0>;

__overlay__ {

status = "okay";

};

};

};

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 27/52



Targets

I To be applied a device tree overlay fragment needs a target.

I Describes where to apply the changes.
I Two possibilities:

I target-path: the argument is a path.
I target: the argument is a phandle.

I When using target, the phandle resolution should be dynamic.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 28/52



Compiling

I dtc -O dtb -o foo.dtb -@ foo.dts

I The -@ option comes from an out-of-tree patch.
I It will generates extra nodes under the root node:

I __symbols__ in the base tree.
I __symbols__, __fixups__ and __local_fixups__ in the overlay.
I Contains metadata used for symbol resolution.

I /plugin/ marks device tree overlay.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 29/52



Introduction to Device Tree Overlays

Example: the base tree

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 30/52



Base tree

/dts-v1/;

/ {

compatible = "example";

foo = <&bar>;

bar: bar@0 {

compatible = "example,bar";

};

};

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 31/52



Device Tree object without dynamic symbols

/dts-v1/;

/ {

compatible = "example";

foo = <0x00000001>;

bar@0 {

compatible = "example,bar";

linux,phandle = <0x00000001>;

phandle = <0x00000001>;

};

};

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 32/52



Device Tree object with dynamic symbols

/dts-v1/;

/ {

compatible = "example";

foo = <0x00000001>;

bar@0 {

compatible = "example,bar";

linux,phandle = <0x00000001>;

phandle = <0x00000001>;

};

__symbols__ {

bar = "/bar@0";

};

};

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 33/52



Introduction to Device Tree Overlays

Example: the overlay

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 34/52



Device Tree Overlay

/dts-v1/;

/plugin/;

/ {

compatible = "example";

fragment@0 {

target-path = "/";

__overlay__ {

quux = <&qux>;

qux: qux@0 {

property = <&foo>;

};

};

};

};
Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 35/52



Device Tree Overlay Object

/dts-v1/;

/ {

compatible = "example";

fragment@0 {

target-path = "/";

__overlay__ {

quux = <0x00000001>;

qux@0 {

property = <0xdeadbeef>;

linux,phandle = <0x00000001>;

phandle = <0x00000001>;

};

};

};

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 36/52



__symbols__ {

qux = "/fragment@0/__overlay__/qux@0";

};

__local_fixups__ {

fragment@0 {

__overlay__ {

quux = <0x00000000>;

};

};

};

__fixups__ {

foo = "/fragment@0/__overlay__/qux@0:property:0";

};

};

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 37/52



Introduction to Device Tree Overlays

phandle resolution

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 38/52



phandle resolution

1. Get the max base tree phandle value, and add 1.

2. Ajdust the overlay phandle values, then use the __local_fixups__ node to fix
local references.

3. Use the __fixups__ node to resolve the overlay phandles referencing objects in
the base tree.

4. Update these references.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 39/52



Applying a Device Tree Overlay

Applying a Device Tree
Overlay
Antoine Ténart

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 40/52



Applying Device Tree Overlays 1/4

I request_firmware()

I Load a firmware into memory.

I The firmware is actually a Device Tree Overlay blob, stored in /lib/firmware/.
I Takes the name of the firmware as an argument.

I It should be guessed from the cape’s header.
I dip-<vendor_id>-<product_id>-<product_version>.dtbo
I If not found, fallback to: dip-<vendor_id>-<product_id>.dtbo

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 41/52

http://lxr.free-electrons.com/ident?i=request_firmware


Applying Device Tree Overlays 2/4

I of_fdt_unflatten_tree()
I Unflatten the overlay loaded previously.
I Create a tree of device nodes from a blob: the live tree format.

I of_resolv_phandles()
I Resolves the phandles against the live tree.
I Dynamic resolution, using nodes added thanks to dtc’s -@ option.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 42/52

http://lxr.free-electrons.com/ident?i=of_fdt_unflatten_tree
http://lxr.free-electrons.com/ident?i=of_resolv_phandles


Applying Device Tree Overlays 3/4

I At this point, we can use the of_* helpers.

I Time to make some checks!

I Is the overlay compatible with the machine used?

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 43/52



Applying Device Tree Overlays 4/4

I of_overlay_create()

I Creates and applies an overlay.

I Keeps track of the overlay applied.
I Can be reverted with of_overlay_destroy()

I When removing stacked overlays, this needs to be done in reverse order.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 44/52

http://lxr.free-electrons.com/ident?i=of_overlay_create
http://lxr.free-electrons.com/ident?i=of_overlay_destroy


The cape manager

The cape manager
Antoine Ténart

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 45/52



Overview

I Responsible for detecting a cape, identifying it and applying the corresponding
overlay.

I Uses all components described before:
I The 1-wire bus.
I The EEPROM in which the cape’s header is stored.
I The device tree overlay mechanism.

I Implemented in the kernel space.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 46/52



The cape manager 1/2

I We patched the 1-wire framework to add callbacks when a new device is detected
on the bus.

I Allows to read the header stored on the cape’s EEPROM as soon as the cape is
detected.

I The EEPROM driver for the DS2431 was available in drivers/w1/slaves/

I Cannot be used outside of the 1-wire framework!

I We redefined its read function in the cape manager.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 47/52

http://lxr.free-electrons.com/source/drivers/w1/slaves/


The cape manager 2/2

I Works fine for most uses.

I Our first test was with a LED and a PWM.
I This can’t work when adding / enabling devices handled by subsystems without

hotplug support.
I Like DRM/KMS.

I Quick solution: add the overlay support in the bootloader.
I Maxime Ripard patched U-Boot.
I Not yet upstreamed.

I Would be better to patch directly DRM/KMS.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 48/52



Summary

1. A new salve device is detected on the 1-wire bus.

2. If the new device family is recognized by the cape manager, a callback is called.

3. The cape manager reads the header stored on the EEPROM.

4. The cape manager parses the header and decides which cape to load.

5. A DT overlay is loaded from userspace.

6. The overlay is applied on the live tree.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 49/52



Current status

Current status
Antoine Ténart

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 50/52



Status

I Implemented recently.

I Solution not fully upstreamed yet.

I The best thing would be to also support other boards with capes, like the
Beaglebone family.

I DTC still needs to be patched.
I We’re not sure what to do.

I We plan to send our patches to the Linux and U-Boot communities.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 51/52



Thanks! Questions?

Slides under CC-BY-SA 3.0

free-electrons.com/pub/conferences/2016/elc/tenart-chip-overlays/

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 52/52


	Context
	Overview
	The 1-wire bus
	Introduction to Device Tree Overlays
	Example: the base tree
	Example: the overlay
	phandle resolution

	Applying a Device Tree Overlay
	The cape manager
	Current status

