Table of Content

What is a TPMP

When & Where TPMP is needed

How it works

What's Next

Why do we need a TPMP

Difficulties

Who needs a TPMP

Achievements at NXP

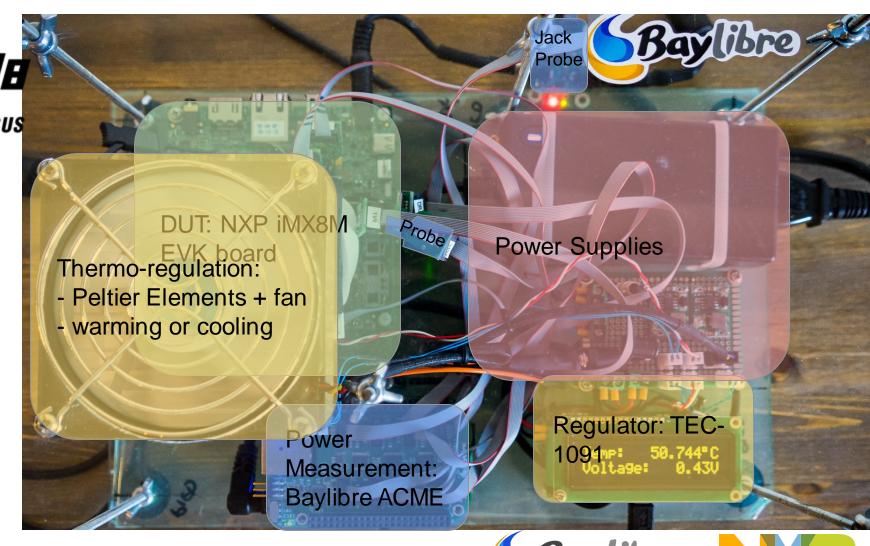
WHAT IS A TPMP?

TPMP IS

- Acronym for Thermo-regulated Power Management Platform
- A power measurement tool (Voltage/Current) for Linux/Android device
- A Hardware Thermal regulation for device under test (Heating or Cooling processor)
- A solution to control all parameters in test environment
- A framework that allows to replay a test suite identically and collect results

TPMP IS NOT

- An option to solve thermal issues on embedded devices
- A thermal policy



TPMP Overview

- Thermo regulation control.
- Power measurement acquisition.
- Test launcher.
- Synch-up tasks and store collected data and logs.
- Data Post processing

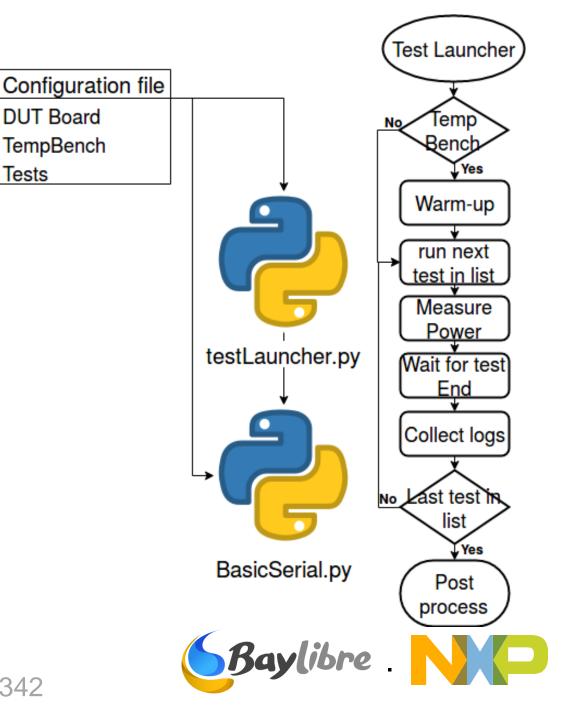
HOWIT WORKS?

Thermo-Regulation

- Peltier Elements: Laird High Temp Series
 - Direct **conversion** of **voltage** to temperature difference between each side.
 - Associated to low noise fan 3-wire + aluminium heatsink to dissipate calories
- Regulator
 - Meerstetter TEC-1091 + Display DPY-1113
 - Python API: pyMeCom
- Sensors:
 - Thermistor for fan control
 - Pt100 sensor closed to DUT for TEC feedback
 - iMX850MQ On Die sensor loopback performed by software

Power Measurement: Baylibre ACME

- The ACME solution comes as an extension for the BeagleBone Black (the ACME Cape), designed to provide multi-channel power capabilities to the BeagleBone Black. Up to 2 capes can be stacked.
- Jack Probe to measure total power and perform power ON-OFF cycles
- 5x 2pin HE-10 **power** probe to monitor individual rails. 8probe/cape. Up to 16 probes/Beagle.
- <u>SW</u>: pyacmegraph for **live** capture, pyacmecapture to store data for post processing.



Test Framework

- Common configuration file
- Basic Serial: Interactive
 - Set-temperature, get-temperature
 - Push/pull files
 - Power cycle DUT
- Test Launcher: Automated
 - Sequence operations
 - Start-up device
 - Start test
 - Collect data (Power and test logs)
 - Test teardown and error management

Source: github/NXPmicro/tpmp_ctrl

DUT Board

TempBench

Tests

Modularity

- Terminal like interface available to control the bench interactively for development (Test automation optional)
- Test automation can be used independently to run tests only, run test + collect power data w/o thermal regulation.
- Communication with DUT relies on serial port only: Linux/Android are handled in the exact same way
- Baylibre ACME Ethernet support for remote control
- BeagleBone Black GPIOs can be driven from the test launcher for additional controls.
- Open source framework python3 can be customized for alternative equipment.

Configuration through common conf file: TEMPBENCH

Warm-up config

Temp Die Target

Temp Fine Tune **Parameters**

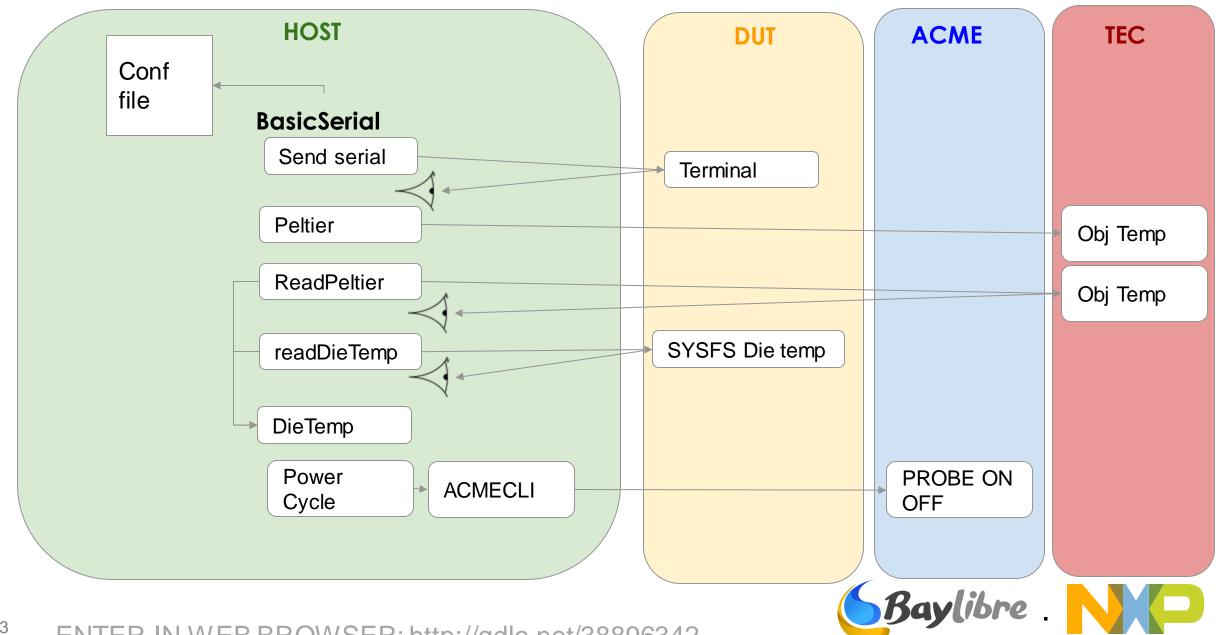
```
[TEMPBENCH]
# path to meerstetter python lib
pyMeComPath = ./lib/meerstetter/pyMeCom/
# id for Meerstetter Peltier controller
peltier serial hwid = 0403:6015
#tempTarget = 30 |
deltaTargetHigh = 10
deltaTargetLow = 4
timitLowHigh = 60
True
# launch this test for warmup (optional)
warmUpTest = warmuptest.sh
# target die temperature for testing if commented out,
test launcher will execute tests wo tempcontrol
tempDieTarget = 25
# True: Fine tune temperature at begining of each test
tempFineTune _ true
# temprineTune duration before delta temp is measured for
correction in seconds
TFTRamp = 20
# tempFineTune total duration in seconds
TFTDuration = 50
# in case some tests needs larger duration than normal
for convergence:
# Warning this is just used for timeout calculation this
needs to be consistent with shell script if used
TFTMultiplier ⇒ 2
```


Configuration through common conf file: TESTS

```
[TESTS]
# test timeout in sec
\#testT0 = 250
                                                              Test Timeout
testT0 = 60
# basic: pseudo terminal full support mini: real terminal
miniterm customized limitted usage testLauncher cannot be used
for now.
termType = basic
# Force board pwrcycle at testLauncher start-up
                                                   Test Duration
bootBoardInit = True
# test duration sec (wo temp fine tune duration)
testDuration = 30
                                                 Probe Duration
#probeDuration = 60
# ACME capture probe duration s
probeDuration = 20
testList = ["coremark1Core-dbg time.sh", "coremark1Core-
                                                           Test list
dbg2 time.sh"]
#prepareBoard = False
# True: use pyacmegraph interface, no report generation, False:
use pyacmecapture with full report generation and logs.
                                                            Results
#acmegraph = True
acmegraph = False
                                                           Reboot
# used to power cycle board
acmecliPath = /home/nxf44606/Baylibre/ACME/CLI/acme-cli/
# acme name in /etc/hostname
acmeName = baylibre-acme-ptec-in.local
#change with path of pyacmegraph.py on host (used only when
acmegraph = True)
pyacmegraphCmd = /home/nxf44606/Baylibre/ACME/GRAPH/pyacmegraph/
pyacmegraph.py
#change with path of template file .acme
pyacmegraphTemplate = /home/nxf44606/Baylibre/ACME/GRAPH/
pyacmegraph/config/VDD12345678NXP.acme
#Force shunt values (might not be needed any longer with latest
acme sw revision)
pyacmegraphShunt = --shunts=10,50,20,50,50,50,50,50
# directory to store logFiles on target
logFilesPath = ./logFiles/
# location of test files on target, path related to
boardConnectPattern
```

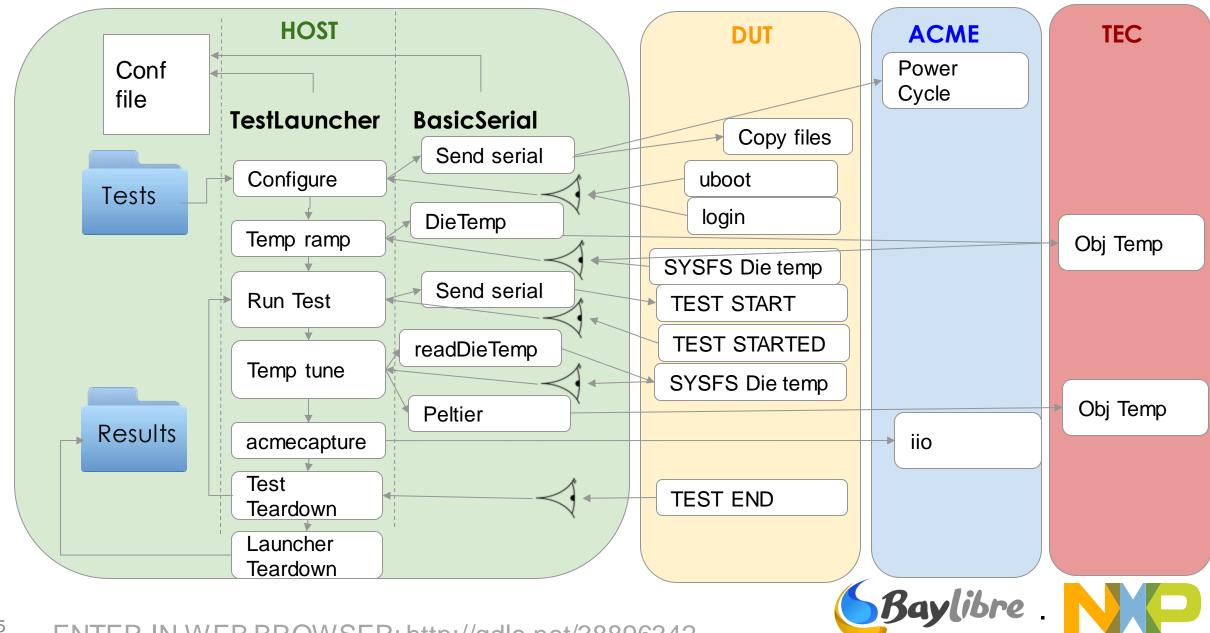
```
# location of test files on target. path related to
boardConnectPattern
testPath = ./
# path to pyacmecapture used to probe power
pyacmecapturePath = /home/nxf44606/Baylibre/ACME/CAPTURE CSV/
acme-utils/pyacmecapture/
#Power rails in same order as probe connection
probeList =
["VBAT","VDD_ARM","VDD_SOC","VDD_DRAM","NVCC DRAM","VDD 1V8",
# Name of result dir
resultsDir = Testcleanuptrial-25C
# pwrcycle after each test completion. If this is not done,
correct teardown should be done to ensure consistent
measurements
rebootAfterEachTest = True
# exitOnLauncherEnd = True: exit testlauncher when all tests
are completed/exitOnLauncherEnd = False: stay connected to
board at end of test for further debbug
#exitOnLauncherEnd = True
# create a zip file with results
zipresults = True
```

Path to local tools



Configuration through common conf file: DUT BOARD, MAIL

```
[TESTBOARD]
                                                                            Test path on DUT
# id for board connected through serial
board_serial_hwid = 10C4:EA70
# serial baud rate
baud = 115200
boardConnectPattern = /unit tests/autotest#
# recomended zmodem (needs to be installed on target)
otherwise txtCopy (No sw needed on target but limited to
txt files only, no binary and no integrity check)
                                                             [SHELL]
copyMethod = zmodem
                                                             #Path of files to copy on board
;copyMethod = txtCopy
                                                             #cpdir = ../shell
# pattern detected at board boot up to enter login pwd
                                                             #avoid copy at each reboot need to implement configure board
loginvite = evk login
                                                             on first reboot only
# root pwd
                                                             cpdir = ../fake
boardpwd = root
                                                             # Send test report automatically by email to recipient list
                                                             [MAIL]
                      Login
                                                             #tested with gmail, need to modify security, allow less
                                                             secure apps: https://myaccount.google.com/lesssecureapps
                                                             smtp = smtp.qmail.com
    Host Path to test dir for copy
                                                             # replace with your account password
                                                             #login = password
                                                             fromaddr = jerome.neanne@nxp.com
                                                             # comment toaddr to avoid sending mail
                                                             #toaddr = ['jerome.neanne@nxp.com', 'pascal.mareau@nxp.com',
                                                             'john.doe@nxp.com']
                 Send result by mail
                                                             #toaddr = ['jerome.neanne@nxp.com']
```



Framework architecture overview interactive mode

Tests formatting

```
#!/bin/bash
                            duration=$1
                                                                                             Test
                            uname -a
                            echo "BoardID: "
                                                                                             Log
                            /unit tests/memtool -32 0x3035C410 1
                            /unit tests/memtool -32 0x3035C420 1
                            /unit tests/autotest/OPP-setup.sh
                            echo "CPU0 online: "
                            cat /sys/devices/system/cpu/cpu0/online
                            echo "CPU1 online: "
                            echo "clk summary"
                            cat /svs/kernel/debug/clk/clk summary
                                "-----TEST start: $0 ------
                            cd /unit tests/autotest/kpa coremark scripts;
                            /unit_tests/autotest/kpa_coremark_scripts/QX_coremark_run.sh &
                                                                                          Launch test
Keywords
                            /unit_tests/autotest/print_temp_time_s.sh 100 2
                            echo "------ $0 -
                                                                                      Optional trace
                            /unit_tests/autotest/print_temp_time_s.sh $duration 2
                            echo "------POWER PROBE End: $0
Cleanup
                            /unit tests/autotest/teardownCM.sh
                            cd /unit tests/autotest:
                                                                        Baylibre D
```

Framework architecture overview Automated mode

Want to try it?

Come to see more & try at ELC Technical Showcase

When? Tuesday October 29 from 17H45

Where: Forum 4/5

WHY DO WE NEED

OTHER OPTIONS?

Other thermal forcing lab tools

Thermo stream

Thermal chamber

Thermal forcing by conduction

ATS-545M Datasheet

DY16TTechnical data

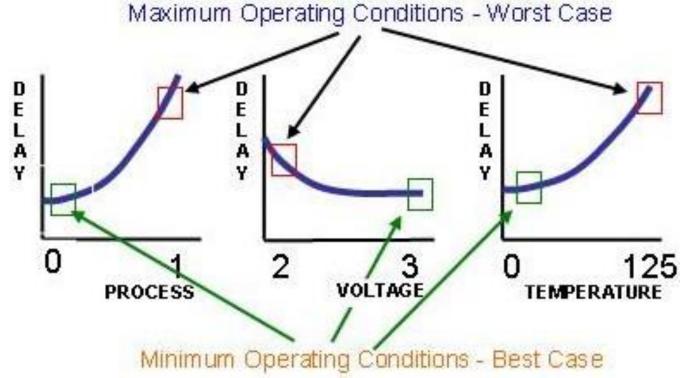
TPMP VS traditional solutions (1/2)

	TPMP	Thermo-stream ATS-545M	Chamber ACS PY16T
Size LxWxH (cm)	30x20x20	61x72x108	46x54x68
Weight (Kg)	<mark><3</mark>	<mark>236</mark>	<mark>60</mark>
Temp range(°C)	<mark>10:</mark> 125	<mark>-80:255</mark>	-35: <mark>130</mark>
Accuracy(°C)	<mark>∓1</mark>	<mark>∓1</mark>	<mark>∓1</mark>
Noise (dBA)	<mark><15</mark>	<mark><65</mark>	<52
Power	24V-6A	230V-30A	230V-4A
Transition rate	1ºC/s heating 0.5ºC/s cooling	18ºC/s	4ºC/min
BOM (\$)	<mark>~1 000</mark>	~40 000	~4 000

TPMP VS traditional solutions (2/2)

	TPMP	MAXTC G4	FlexTC
Size LxWxH (cm)	30x20x20	61x50x36	42x32x22
Weight (Kg)	<mark><3</mark>	<mark>52</mark>	22
Temp range(°C)	<mark>10:</mark> 125	<mark>-40:175</mark>	<mark>-40:155</mark>
Accuracy(°C)	<mark>∓1</mark>	<mark>∓0.5</mark>	<mark>∓0.5</mark>
Noise (dBA)	<mark><15</mark>	< <mark>55</mark>	<mark><45</mark>
Power	24V-6A	230V-10A	230V-10A
Transition rate	1°C/s heating 0.5°C/s cooling	75°C/min	75°C/3min
BOM (\$)	<mark>~1 000</mark>	~30 000	<mark>~20 000</mark>

WHY DO WE NEED

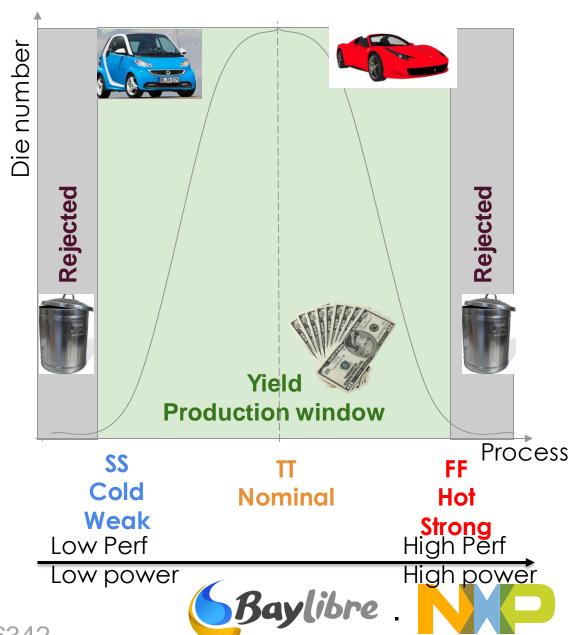

PHYSICS!

Definitions: Process Performance

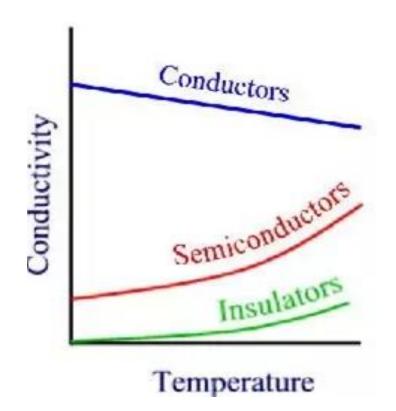
- Process: Account for deviation in the fabrication process
- Performance: Signal propagation delay on silicon converted to clock frequency (MIPS). Higher mobility Lower delay higher perf.
- PVT: Process, Voltage, Temperature

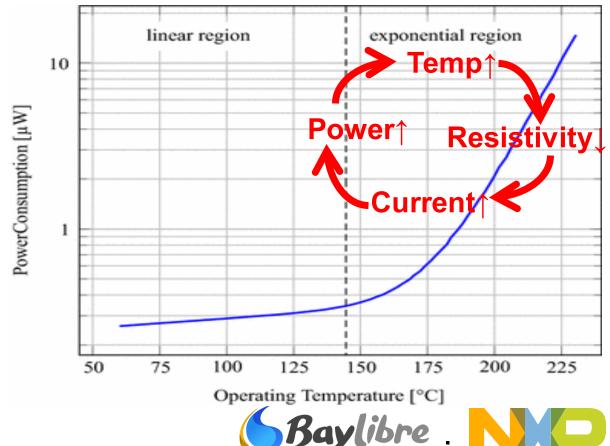
Higher Voltage = Higher Perf

Higher Temp = Lower Perf

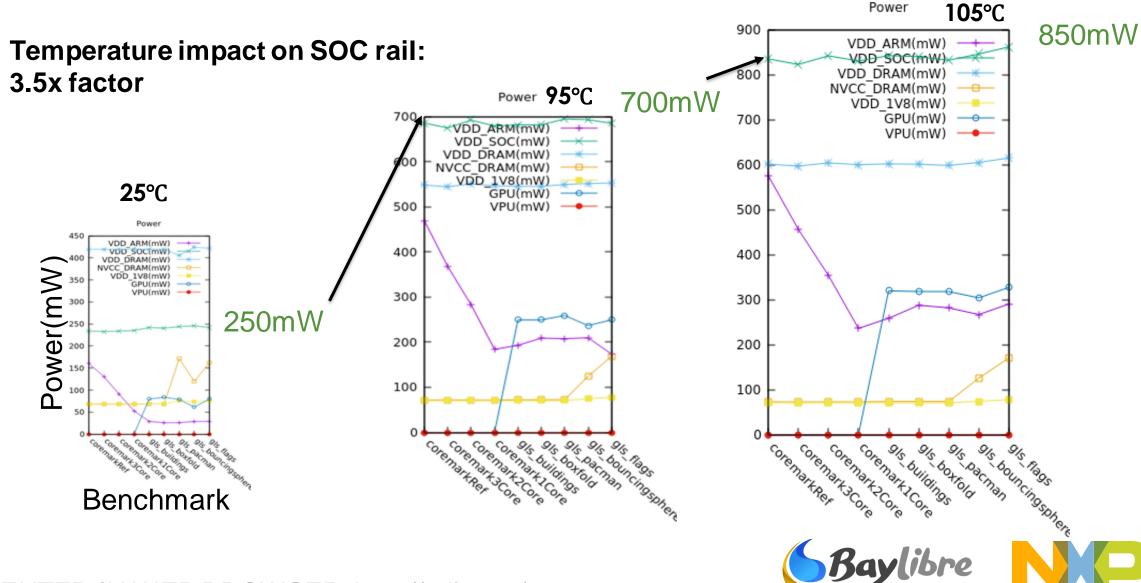

Process?

Silicon characterization glossary

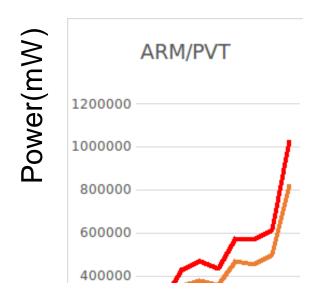

- Split lots: wafer fabricated with process parameters adjusted to extreme
 - Fast/FF/Hot: High performance, high power
 - Slow/SS/Cold: Low performance, low power
 - Typical/TT/Nominal: process centered
- Process corner:
 - Best Case: fast Process, high Voltage, low Temp
 - Worst Case: slow Process, low Voltage, high Temp

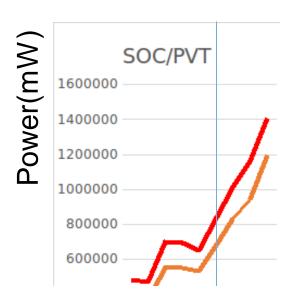


How High Temperature affects silicon


- Mobility decreases with Temp: Lower Performance
- Carrier number increases with Temp
- Conductivity increases with Temp: Higher Power

High Temp: Lower Perf Higher Power

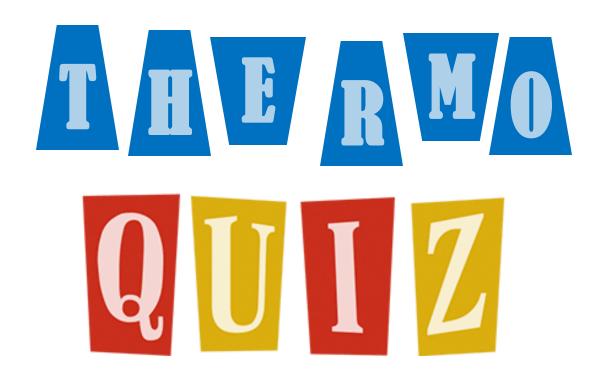




Characterization result charts for one board at same scale

Characterization across boards for one use case (coremark)

MAJOR IMPACT OF TEMPERATURE AND PROCESS ON POWER MEASUREMENT. THERMAL FORCING IS MANDATORY TO ENSURE RELEVANT MEASUREMENTS



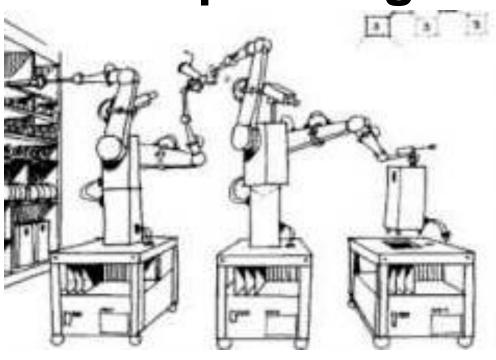
Thermal Quizz

Go to TPMP quizz

WHO NEEDS?

WHO needs a TPMP

- Characterization engineers
- Industry working on products where power cycle/measurement and temperature conditions make a difference: IC, battery...
- Product engineers working in aging tests and/or worst case conditions
- Power management optimization team.
- Power CI.

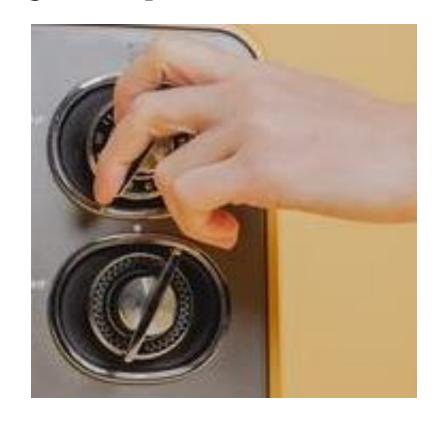


A TPMP WHEN & WHERE?

- Silicon is sensitive to PVT:
 - P&V are fixed by construction
 - Only temperature can be controlled.
- Die Temperature is affected by:
 - Environment conditions
 - Device load
 - Previous activity on the platform (Thermal inertia). Test suite sequencing can impact the result of single test measurement.

- High temperature → Higher power for same test: Test Full Steam
- Worst case Power + Worst case Delay:
 More prone to show failures.
- Aging: Forcing temperature cycle will stress the system in a different way.
- Comparing result at low temperature and high temperature will allow to discriminate temperature related issues.

Measure Worst case!


Detect hidden issues invisible at room temp!

- Higher temperature → Higher currents → IR Drop:
 Potential electrical issues can be detected.
- Assess Thermal policy effects (Power/Performance/Behavior)
- Assess impact of other system components sensitivity to Thermal (ex: DDR self-refresh rate increase)
- Detect and discriminate timing issues that would appear only at high temp (hold violation)

Adjust parameters!

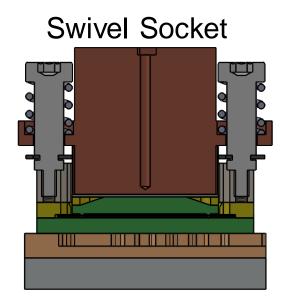
- In a CI Farm with N boards:
 - Power measurement depends on the board (Process variation)
 - Different Run of same test on different boards cannot be compared
 - Thermoregulation provides a way to calibrate devices

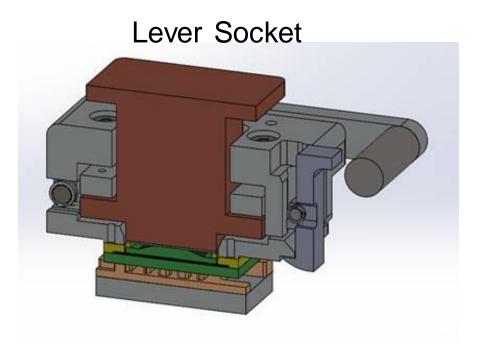
WHAT'S NEXT?

TPMP HW Evolutions (1/2)

 New Peltier element reference used for enhanced performance: in house MultiStage version. MS2-192-14-20-11-18 Better Stability and better performance at low temperature (0°C)

- Baylibre ACME raspberry Hat:
 - Standard connector
 - Lower price
- USB type-C full support
 - ON-OFF box
 - File transfer with remote connection control



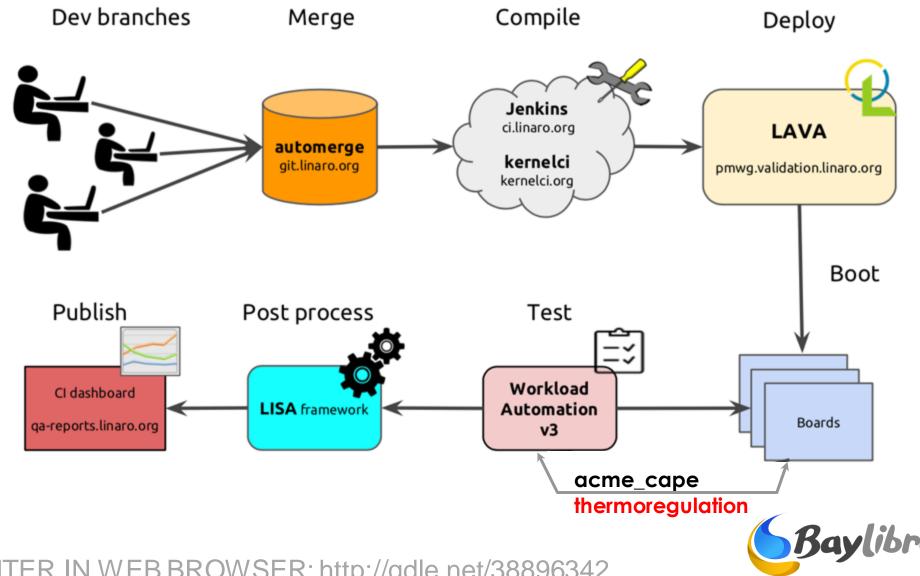


TPMP HW Evolutions (2/2)

 Development of a dedicated socket optimized for thermal transfer efficiency and enabling to swap die:

New casing

TPMP Next step SW

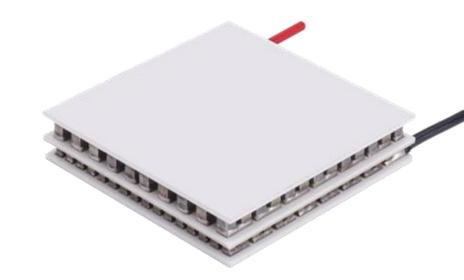


- Current implementation relies on a custom Framework that was developed in a POC mode for characterization activity.
- Custom Framework does not provide all the features supported by standard "state of the art" CI Framework.
- TPMP control software should be refactored to expose Thermoregulation feature as an additional instrument for standard CI framework
- A plug-in development for <u>ARM Workload Automation</u> is under study.

Standardized Thermoregulation for power CI

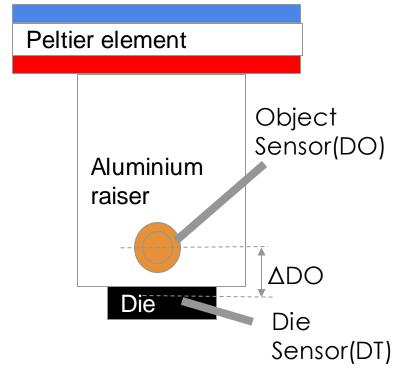
Custom solution vs standard

Feature	ТРМР	WA	Comment
Merge Dev Branch	X	√	Build and flashing not supported
Build	X	√	in current TPMP implementation
Kernel CI	X	√	
LAVA	X	√	
Test Launcher	√	√	
Power Measure	√	√	
acme_cape	√	√	Enhance WA with pyacmecapture instead of IIO capture
Thermoregulation	√	X	Develop additional instrument Plug-in
Post Processing	√	√	Custom scripts vs LISA framework + publication


DIFFICULTIES

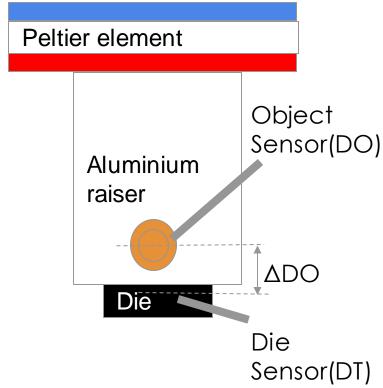
Issues Resolved during development (1/3): Temp Range

- Sustain High Temperatures with Peltier Elements
 - Issue: Regular Peltier collapse after 100°C, higher temperature is destructive
 - Solution: Use High Temp parts



- Cover the whole temperature window: 25°C to 105°C
 - Issue: For some DUT, the power to deliver is over the Peltier characteristics limits.
 - Solution: Move to 24V power supply (full Voltage Range) + Stack 2 Peltier elements

Issues Resolved during development (2/3): Accuracy & Reliability


- Die Temperature accuracy ±1°C
 - Issue: Delta Object sensor die depends on board (Process/Dissipation) and temperature range
 - Solution: SW Close loop with On Die sensor for temperature convergence
- Low Temperature can be destructive
 - Issue: below 20°C condensation starts appearing on the metallic raiser... It will irreversibly damage the board as soon as water touch the board.
 - Solution: Protect metallic surfaces with Silicone tape

Issues Resolved during development (3/3): Techniques for non intrusive thermoregulation

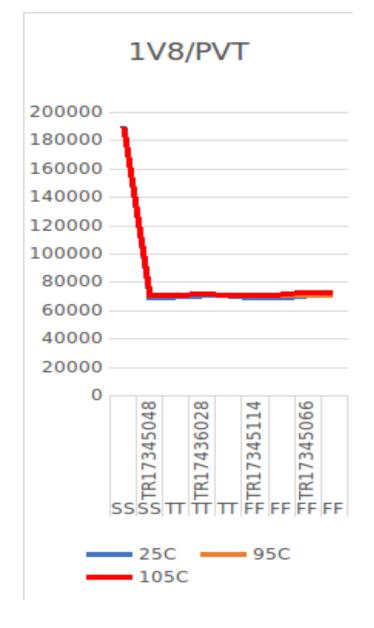
- Temperature fine tune:
 - Objective: Compensate **\Delta T** due to **Test load** variation.
 - After ramp-up completion, TPMP operate in a linear range. TDie - TObject: ΔDO < 5°C
 - Measure Die temp: TD calculate delta to Target ΔDT
 - ΔDT is reported directly to **compensate DT variation**.
- Log capture:
 - Minimal interaction with serial link during capture
 - Dmesg is copied to file after test completion
 - Serial log is captured on the host side
 - Capture window ends before test completion and sync message send to host

ACHIEVEMENTS

Achievements: Success stories at NXP

- 10 TPMP for different iMX8 flavor delivered and in production
 - Used for OPP characterization
 - Used by validation team for power measurement campain
 - Used by Power Optimization team, soon in power Cl.

Framework used in aging test to detect and reproduce rare issues happening after days.



Achievements: Success stories at NXP

 Successfully used to reproduce then analyze performance issues happening at high temperature only.

Detect board issue while no behavioral impact is visible

BACKUPS

Thermo stream

ATS-545M Datasheet

PERFORMANCE:

Temperature Range*

-75 to +225°C (50Hz) -80 to +225°C (60Hz) No LN₂ or LCO₂ Required

Transition Rate*

-55 to +125°C, approx. 10 seconds or less 125 to -55°C, approx. 10 seconds or less

System Airflow Output*

4 to 18scfm (1.9 to 8.5 l/s) Continuous

FEATURES:

Frost Free Feature dry air purge for tester interface, prevents condensation: 0.5 to 3scfm (0.25 to 1.5 l/s)

▶ ECO Friendly Feature

Heat Only Mode reduces power usage when cold temperatures are not used

► Fully Adjustable Thermal Head

under nominal operating conditions ultimate low temperatures (±1°) achieved at 12scfm

Thermal chambers

	MODEL	DY16 T	DY60 T(C)	DY110 (C) 1	DY200 (C) 1
Useful capacity (f)		16	59,5	110	206
Internal dimensions approx. (mm)	Width	310	350	548	601
	Depth	230	340	447	541
	Height	206	500	447	634
External dimensions approx. (mm)	Width	465	630	877	927
	Depth	541	970	1080	1379
	Height	685	1180	1434	1794
Temperature range (°C)	Basic	-35+130	-40+180	-40+180	-40+180
	C model		-70+180	-70+180	-70+180
Temperature fluctuation (K)		±1	±0.1±0.3	±0.1_±0.3	±0.1±0.3
Temperature changing rate Heating 4-1 (K/min)	Basic (-40/+180°C)	4,5 (-35/+130°C)	3	3,2	4
	C model (-70/+180°C)		3	3,2	4
Temperature changing rate Cooling 6-5 (K/min)	Basic (+180/-40°C)	3,5 (+130/-35°C)	3	4	4,5
	C model (+180/-70°C)		3	2,8	3
Humidity range (%) (r=-3/+93°C) ²				1095	1095
Temperature range for climatic test (°C)				1095	1095
Humidity fluctuation (%)				±1±3	±1±3
Maximum thermal Load (W) ⁵	Basic T=+25°C	250	250	350	2300
	C model T=+25°C		250	500	1500
Rated power (kW)	Basic	0,7	2,0	3	6
	C model		2,3	3,7	7
Rated current absorption (A)	Basic	4	9	16	10
	C model		11	16	12
Weight (kg)	Basic	60	210	350°	485
	C model		230	360°	545
Sound pressure level dB(A) ³	Basic	52	57	52	53
	C model		59	52	59
Supply voltage (Vac)			230V ±10%/50Hz/1 + G		400 V ±10%/50Hz/3 + N+ G

1. for Temperature only version add the suffix T - 2, T= +4°C/+83°C for continuous test - 3, measured at 1 m distance in front of the unit, free field measurement - 4, according to EC 60068-3-5 and EC 60068-3-6 - 5. The performance data refer to +22°C ambient temperature, 230V or 400V nominal voltage, without specimen - 6. value without supporting table

DY16TTechnical data

Thermal forcing by conduction

System general

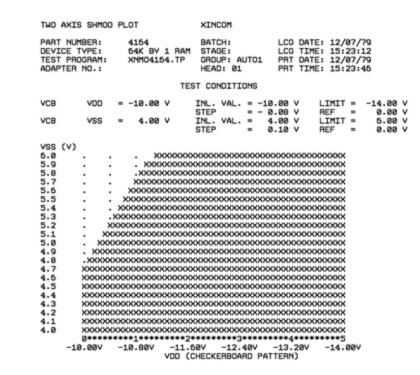
Mechanical dimensions

Temperature range	-70°C to +175/200°C		
Temperature accuracy	±0.5°C		
Typical transition rates	25°C to -40°C in ~<2min 125°C to 25°C in ~<2min		
Temperature sensor	Tcase PT100 thermistor K-type thermocouple Thermal-diode through ethernet port Thermal-diode through analog port Ethernet (TCP/IP)		
System indicators and failsafes	Thermal head over-temperature fan operation, cooling unit operation		
DUT pressure force	2 - 100 Kg/Force		
DUT dimensions	≥ 2 x 2 mm		
DB rating	55 dBA		
MTBF	70,000 hr		

System enclosure mm / inch	L) 610mm x (W) 505mm x (H) 365mm (L) 21.8" x (W) 17.7" x (H) 11.8"	
System weight	52 Kg	
Thermal head (mm)	80mm diameter	
Thermal head hose	2 meter (6.5ft) standard	

Electrical	220/230/240 VAC ±10% 50/60 Hz, single phase, 10A max.	
Purge	0.2-0.6[MPa] dry air/ dry Nitrogen	
Ambient temperature	5°C to 35°C (40°F to 95°F)	
Ambient humidity	20% to 95% RH	

MAX TC G4


Silicon characterization glossary

- Characterization: testing the design with voltage and frequency shmooing to find the ideal operating conditions
- Shmoo plot: Shows graphically the range of conditions in which DUT operates
- OPP: Operating Performance Point, a list of frequency and voltage pairs

TWO AXIS SHMOO PL	_OT	XINCOM				
PART NUMBER: DEVICE TYPE: TEST PROGRAM: ADAPTER NO::	4164 64K BY 1 RAM XNMO4164.TP	BATCH: STAGE: GROUP: AUTO1 HEAD: 01	LCG DATE: 12/07/79 LCG TIME: 15:23:12 PRT DATE: 12/07/79 PRT TIME: 15:23:46			
TEST CONDITIONS						
VCB VDD =		INL. VAL. = -10. STEP = -0.	.00 V LIMIT = -14.00 .08 V REF = 0.00			
VCB VSS =	4.00 V	INL. VAL. = 4	.00 V LIMIT = 6.00 .10 V REF = 0.00			
5.4	. XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			
	VDD (C	HECKERBOARD PAT				

TPMP Alternative developments

- Shmoo machine:
 - Add Voltage control equipment (can be HW or SW)
 - Add Frequency control equipment (SW)
- Automated Power Optimization framework
 - Low power UC optimization goes through an exploration of all the IO configuration + clock gating configuration to achieve ultimate low power optimization
 - This can be achieved automatically by systematic exploration of all the configuration combining TPMP with <u>memtool</u> (sw version or JTAG)

SECURE CONNECTIONS FOR A SMARTER WORLD