

Linux Suspend-To-Disk Linux Suspend-To-Disk
ObjectivesObjectives

 for Consumer Electronic for Consumer Electronic
DevicesDevices

Vitaly WoolVitaly Wool
EmbeddedAlley Solutions Inc.EmbeddedAlley Solutions Inc.

Suspend-To-Disk (STD)Suspend-To-Disk (STD)
• suspend mode with the most power

saving
• may be deployed on systems with

minimal PM
• writes all the memory contents to disk

before going into suspend
– swap or dedicated partition

• the kernel is re-started on resume
– restores the information from STD image

STD VS STRSTD VS STR
• data saved to non-

volatile storage
• userspace data is

saved
• resume at kernel

entry point
• devices are first put

into active state,
then
suspended/resumed

• data saved to
RAM

• no userspace data
is saved

• resume at kernel
resume point

• devices are
resumed directly

STD ObjectivesSTD Objectives

• Pro
– maximum power savings
– easy to implement for a new platform

• Contra
– long time to suspend
– long time to resume
– needs a lot of free space on disk
– redundant data copying

• storage to allocated space, then to RAM

STD for a CE deviceSTD for a CE device
• CE device objectives

– usually no disk, only flash
– struggle for space saving
– slower than PC
– usually powered even in OFF state (battery)

• “vanilla” STD not suitable
– see the previous slide

• the resume time is not just long, it's VERY long

STD for a CE device: how to STD for a CE device: how to
adapt?adapt?

• boot time
– more support from bootloader
– parallel device init (separate topic :))
– skip kernel init stage

• space consumption
– selectively save the information
– compress the data

STD example: swsusp for ARMSTD example: swsusp for ARM

• data saved on a swap partition
– MTD usually
– flushing takes quite a bit of time

• suspend using the standard means
– 'echo disk > /sys/power/state'

• resume gets a bit of bootloader help
– “resume=/dev/mtdblock2” or such

STD example: suspend2 for ARMSTD example: suspend2 for ARM

• data saved on a swap partition
– MTD usually
– flushing takes quite a bit of time

• compression and encryption available
• suspend using the standard means

– “hibernate” script

• resume gets a bit of bootloader help
– “resume2=/dev/mtdblock2” or similar

STD example: snapshot boot for STD example: snapshot boot for
ARMARM

• data saved on a swap partition
– MTD usually
– flushing takes quite a bit of time

• suspend using the standard means
– 'echo disk > /sys/power/state'

• resume needs bootloader help
– 'bootss <address>' command

snapshot boot VS STDsnapshot boot VS STD
• direct data copying

– swap to RAM

• starts at kernel
resume point

• devices are resumed
directly

• redundant data
copying
– swap to allocated
– allocated to original

• starts at kernel entry
point

• devices are first put
into active state,
then
suspended/resumed

Example: PocketPC prototypeExample: PocketPC prototype

• ARM1136-based SoC
• supports Deep Idle state

– the CPU is turned off, only RTC clock is running
– most of the registers are lost
– resumes on power button press, RTC alarm and

«battery low» signal
– RAM self-refresh mode available

• battery always in
– RAM contents are not lost on exit from self refresh

Example: PocketPC prototypeExample: PocketPC prototype

• power management goals
– aggressive power saving strategy
– fast resume
– state preservation if the battery is low

• STR?
– fails the last goal
– a lot of work to preserve CPU and devices’

registers/states

• STD?
– fails the second goal

Solution: “snapshot boot + STR” Solution: “snapshot boot + STR”
hybridhybrid

• modify “snapshot boot” to cleanly
separate saved kernel and userspace
info

• use “snapshot boot” for suspend but
save data in RAM

• wakeup on “battery low” event and flush
data to flash or disk

““snapshot boot + STR” hybrid: snapshot boot + STR” hybrid:
how it workshow it works

• resume starts running bootloader either
way

• bootloader to find out
– normal boot
– resume from Deep Sleep (data in RAM)

• restore only kernel-related data

– resume from poweroff (data in swap)
• standard resume from snapshot boot

0

1000

2000

3000

4000

5000

6000

Kernel Boot, ms

snapshot boot, ms

SB from RAM, ms

STR, ms

ConclusionsConclusions

• current Linux suspend states do not
always match the CE devices’ PM goals
– more flexibility is desired

• hybrid solutions can help in many cases
– better matching the goals
– existing code/framework reuse

• what about standardizing?
– …

Questions?Questions?

mailto:vital@embeddedalley.commailto:vital@embeddedalley.com

