Buildroot vs Yocto:
Differences for Your Daily Job

Luca Ceresoli — AIM Sportline
luca®@lucaceresoli.net
http://lucaceresoli.net

ELC-E 2018

mailto:luca@lucaceresoli.net
http://lucaceresoli.net

= Embedded Linux engineer
at AIM Sportline
http://www.aim-sportline.com/
= Develop products on custom

hardware
= Kernel, drivers, bootloader, FPGA

= Integration, build system
= Open source enthusiast
Contributor to Buildroot, the Linux
kernel and a few other projects

http://www.aim-sportline.com/

Introduction

= This is not a tutorial

https://elinux.org/images/7/7a/Bellonipetazzoni.pdf
https://www.youtube.com/watch?v=13LZ0szWSVg
http://www.jumpnowtek.com/linux/Choosing-an-embedded-linux-build-system.html
http://www.jumpnowtek.com/linux/Choosing-an-embedded-linux-build-system.html
https://opensource.com/article/18/6/embedded-linux-build-tools

= This is not a tutorial

= This is not a feature comparison, not a selection guide

https://elinux.org/images/7/7a/Bellonipetazzoni.pdf
https://www.youtube.com/watch?v=13LZ0szWSVg
http://www.jumpnowtek.com/linux/Choosing-an-embedded-linux-build-system.html
http://www.jumpnowtek.com/linux/Choosing-an-embedded-linux-build-system.html
https://opensource.com/article/18/6/embedded-linux-build-tools

= This is not a tutorial
= This is not a feature comparison, not a selection guide

= |f you need one:
= Buildroot vs. OpenEmbedded/Yocto: A Four Hands Discussion,
Belloni and Petazzoni, ELC 2016 (slides and video online)
= http://www.jumpnowtek.com/linux/
Choosing-an-embedded-linux-build-system.html
= https://opensource.com/article/18/6/embedded-1linux-build-tools

https://elinux.org/images/7/7a/Bellonipetazzoni.pdf
https://www.youtube.com/watch?v=13LZ0szWSVg
http://www.jumpnowtek.com/linux/Choosing-an-embedded-linux-build-system.html
http://www.jumpnowtek.com/linux/Choosing-an-embedded-linux-build-system.html
https://opensource.com/article/18/6/embedded-linux-build-tools

This is not a tutorial

This is not a feature comparison, not a selection guide

If you need one:
= Buildroot vs. OpenEmbedded/Yocto: A Four Hands Discussion,
Belloni and Petazzoni, ELC 2016 (slides and video online)
= http://www.jumpnowtek.com/linux/
Choosing-an-embedded-linux-build-system.html
= https://opensource.com/article/18/6/embedded-1linux-build-tools

Fact: both tools have pros and cons

https://elinux.org/images/7/7a/Bellonipetazzoni.pdf
https://www.youtube.com/watch?v=13LZ0szWSVg
http://www.jumpnowtek.com/linux/Choosing-an-embedded-linux-build-system.html
http://www.jumpnowtek.com/linux/Choosing-an-embedded-linux-build-system.html
https://opensource.com/article/18/6/embedded-linux-build-tools

VAN)
! NN

In a nutshell:
a dependency graph
with actions to build each node.

...but different — based on different tools

Kconfig :) Make Bitbake

..but different — root filesystem VS distribution

Yocto

}

Buildroot
Kernel Bootloader| | Root FS

Packages (ipk, dpkg, rpm)

}

}

|

Kernel

Bootloader

Root FS

= Bootstrapping

= Naming

= Writing recipes

= Layers / external trees

= Building

= Understanding what's going on
= Customizing the root filesystem

= Tweaking recipes

Bootstrapping

Ingredients

= Get the sources

= git clone git://git.buildroot.net/buildroot; cd buildroot

Ingredients

1. Get the Poky sources (bitbake, oe-core)

= git clone -b sumo git://git.yoctoproject.org/poky; cd poky
2. You'll probably need more recipes

= git clone -b sumo git://git.openembedded.org/meta-openembedded
3. Additional layers can be useful

= SoC/board vendor BSP layer, additional software, ...
= http://layers.openembedded.org/layerindex/branch/master/layers/

http://layers.openembedded.org/layerindex/branch/master/layers/

= Smooth start: find a defconfig for a similar board
= make list-defconfigs # minimal booting configs
= make similar_board_defconfig

= Or from scratch

= Find kernel and U-Boot sources that work for your SoC
= make menuconfig

= Target: architecture, CPU features

= Kernel: where to fetch it from, defconfig, dtbs

= U-Boot: where to fetch it from, defconfig

/home/murray/devel/buildroot/.config - Buildroot 2018.08 Configuration
> Kernel
Kernel
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----).
Highlighted letters are hotkeys. Pressing <Y> selects a feature, while <N> excludes a feature.
Press <Esc»<Esc> to exit, <?> for Help, </> for Search. Legend: [*] feature is selected []
feature is excluded

[*] Linux Kernel
***¥ Linux kernel in thumb mode may be broken with binutils >= 2.29 **¥
Kernel version (Custom version) --->
(4.17.4) Kernel version
() Custom kernel patches
Kernel configuration (Using an in-tree defconfig file) --->
(imx_v6_v7) Defconfig name
() Additional configuration fragment files
Kernel binary format (zImage) --->
Kernel compression format (gzip compression) --->
[*1 Build a Device Tree Blob (DTB)
(imx6q-sabresd imx6dl-sabresd imx6qp-sabresd) In-tree Device Tree Source file names
() Out-of-tree Device Tree Source file paths
[1 Install kernel image to /boot in target
[*]1 Needs host OpenSSL
[1 Needs host libelf
Linux Kernel Extensions --->
Linux Kernel Tools --->

< Exit > < Help > < Save > < Load >

10

= ., oe-init-build-env # creates and enters the build/ dir
= Smooth start: find a defconfig for a similar board

= 1s conf/machine/ in your SoC vendor layer
= Set MACHINE 7= "<similar_machine>" in conf/local.conf

11

= make

= Without parameters builds “all”

12

= bitbake <IMAGE>

= bitbake core-image-minimal

13

Naming

Building items

N

N _ﬁ\

14

Package == Recipe

Rules to download and “build” a single program, library or other
(e.g. binutils, busybox, gcc, libxml2)

= Each package is a Make target = Each package is a Bitbake target
and has a Kconfig on/off knob

= make libxml2 = bitbake libxml2

= host-<PKG>: the same package built = <PKG>-native: the same package
for the development host (native built for the development host (native
build) build)

15

Step == Task

Each package requires several steps to be built

= No formal name, usually called just = Called tasks
steps (often prefixed with'do_)

= source, extract, patch, = fetch, unpack, patch, configure,
configure, build, install, .. compile, install, deploy, ..

= Each step is also a make target = First-class citizens in bithake

= The special <PKGNAME> make target = The special build task depends on all
depends on all other normal tasks other normal tasks required to 'build’
required to 'build’ a recipe a recipe

= make libxml2-configure = bitbake -c configure
host-binutils-build busybox libxml2 busybox

16

Default steps/tasks

install-target install-staging install-images

17

Naming side-by-side

Package Recipe
Package Step Recipe Task
host-<PKG> <PKG>-native

pkg-generic.mk base.bbclass

source fetch
extract unpack
patch patch
configure configure
build compile
install-{target,staging} install
install-images deploy

18

Layers / external trees

Yocto: layers

The preferred way to add features: layers

conf/bblayers.conf

BBLAYERS 7= " \
/home/murray/devel/poky/meta \
/home/murray/devel/poky/meta-poky \
/home/murray/devel/poky/meta-yocto-bsp \
<...path to other layers...> \

19

Yocto: adding layers

BBLAYERS 7= " \
/home/murray/devel/poky/meta \

/home/murray/devel/poky/meta-poky \
/home/murray/devel/poky/meta-yocto-bsp \
${TOPDIR}/../meta-my-soc-vendor \
${TOPDIR}/. ./meta-openembedded/meta-oe \

= Suggestion: use relative paths

20

Yocto: .bbappend

= .bbappend files are appended to the .bb file while parsing
= Change variable values
= Append/prepend to tasks

= The resulting myrecipe is a concatenation of:

= <LAYER1>/*/*/myrecipe.bb
= <LAYER2>/*/#*/myrecipe.bbappend
= <LAYER3>/*/*/myrecipe.bbappend

21

Yocto: issues with layers

= Some SoC vendor layers augment the buildsystem, at times creating problems
= Conflict between layers (e.g. in gstreamer)
= Suggestion: add layers one by one, bottom-up, test each time

= Problems?

= Fix the offending code in your layer (.bbappend)
= disable the recipe (PNBLACKLIST) and provide an alternative
= Don't use the layer, copy only what you need

22

Yocto: your top-level layer

= Add your top-level layer

= Your machine configuration
= Your proprietary packages
= .bbappends and other files to modify the behaviour of lower layers

23

Buildroot: BR2_EXTERNAL

BR2_EXTERNAL is technically similar to Yocto layers, but simpler

The goal is to add, not modify

Typical use: add your own product customizations

packages
Kconfig options
defconfigs
boards

patches

Need to fix/improve a Buildroot package?

Suggested policy: do it in the Buildroot code, then submit your improvements
upstream

24

Buildroot: BR2_EXTERNAL

‘ $ make BR2_EXTERNAL=~/devel/myext:~/devel/myext2 menuconfig

= The list of your externals is saved in .config
= The top-level Makefile will include each external Makefile

= The same for Config.in files

25

Writing recipes

A simple Yocto package: the .bb file

<MYLAYER>/recipes-app/corporate-apps/foo_1.0.bb

SRC_URI = "http://www.foo.org/download/foo-${PV}.tar.xz"
DEPENDS = "libbar-native libusb"

do_compile() {

oe_runmake all

do_install() {
install -D -m 0755 ${B}/foo ${D}${bindir}/foo

26

A simple Buildroot package: the makefile

package/foo/foo.mk

FOO_VERSION = 1.0
FOO_SITE = http://www.foo.org/download
FOO_DEPENDENCIES = host-libbar libusb

define FOO_BUILD_CMDS
$ (MAKE) $(TARGET_CONFIGURE_OPTS) -C $(@D) all

endef

define FOO_INSTALL_TARGET_CMDS
$(INSTALL) -D -m 0755 $(@D)/foo $(TARGET_DIR)/usr/bin/foo
endef

$(eval $(generic-package))

27

A simple Buildroot package: Config.in

= Shows the package in the Kconfig interfaces

= Uses the Kconfig language

package/foo/Config.in

config BR2_PACKAGE_FOO

bool "foo"
select BR2_PACKAGE_LIBUSB
help

A brief description.

28

Yocto classes

= classes implement common features for reuse in recipes

= .bbclass files
= There are classes for the most common build tools: Autotools, CMake

<MYLAYER>/recipes-app/corporate-apps/foo_1.0.bb

SRC_URI = "http://www.foo.org/download/foo-${PV}.tar.xz"
DEPENDS "libbar-native libusb"

inherit autotools

29

Buildroot package infrastructures

= package infrastructures are classes of packages that use the same build tool
= Autotools, CMake, Python, LuaRocks, Perl/CPAN ..

= Most commands have a default

package/foo/foo.mk

FOO_VERSION = 1.0
FOO_SITE = http://www.foo.org/download
FOO_DEPENDENCIES = host-libbar libusb

$(eval $(autotools-package))

30

Yocto classes

= With classes the common do_<TASK> functions are already set
= Customizable via infrastructure-specific variables

EXTRA_OECONF += "--enable-warp-speed"
= Can be extended with

= do_<TASK>_prepend
= do_<TASK>_append

do_install_append() {
touch ${D}${sysconfdir}/foo.conf

31

Buildroot package infrastructures

= With package infrastructures FOO_<STEP>_CMDS are already set

= Customizable via infrastructure-specific variables
FOO_CONF_OPTS = --enable-warp-speed
= To extend them define hooks
= FOO_PRE_<STEP> HOOKS
» FOO_POST_<STEP> HOOKS

define FOO_CREATE_CONF_FILE
touch $(TARGET_DIR)/etc/foo.conf
endef
FOO_POST_INSTALL_HOOKS += FOO_CREATE_CONF_FILE

32

Predefined variables

Lots of predefined variables can (and should) be user in rules. The most widely used:

Buildroot Yocto
Package name <PKG>_NAME PN
Package raw name <PKG>_RAWNAME BPN
Package version <PKG>_VERSION PV
Source code dir @D S
Build dir @D B
Install files in (*) TARGET_DIR D

Install images in (*) BINARIES_DIR DEPLOYDIR

* The final dirs in Buildroot, temp dirs in Yocto.
33

Adding patches

Buildroot Yocto

.patch file in package dir .patch file in recipe subdir (*)
<PKG>_PATCH = <URL> SRC_URI += <URL>
BR2_GLOBAL_PATCH_DIR tree Your layer

* Plus SRC_URI += "file://foo.patch"
(and FILESEXTRAPATHS prepend = "<DIR>:")

34

Overall recipe directory layout

<BUILDROOT> <LAYER>
Lpackage L recipes-*
L mypackage L«
Config.in
— mypackage.mk myrecipe 1.0.bb

- mypackage. hash
files

— 0001-fix-bug.patch |--fix-bug.patch

35

Building

Buildroot Yocto

make [all] bitbake <IMAGE>

make busybox bitbake busybox

make busybox-configure bitbake -c configure busybox

make busybox-reconfigure bitbake -C configure busybox

make clean bitbake -c clean world

make busybox-dirclean bitbake -c clean busybox

36

Tuning resource usage

Buildroot

Yocto

BR2_JLEVEL=2 make

Build options -+ Enable compiler

cache

PARALLEL_MAKE="-j 2" bitbake
BB_NUMBER_THREADS=2 bitbake

SSTATE _DIR 7= " /.sstate-cache"

37

Buildroot: out-of-tree builds

= make O=foo foo_defconfig

= make O=bar bar_defconfig
= cd foo; make

= Build in foo/* instead of output/*

38

Buildroot: out-of-tree builds

= make O=foo foo_defconfig
= make O=bar bar_defconfig
= cd foo; make
= Build in foo/* instead of output/*
= cd bar; make

= Can run in parallel

38

Yocto: multiple machines and images

= bitbake core-image-minimal
= bitbake my-image-huge

= Recycles common artifacts

39

Yocto: multiple machines and images

= bitbake core-image-minimal
= bitbake my-image-huge
= Recycles common artifacts
= MACHINE=another-board bitbake my-image-huge

= Remember to use 7= to set MACHINE in your conf file

39

Buildroot dependency tracking: stamp files

= Dependency tracking is at the core of Make (program — .0 — .c)
= Does not fit completely the needs of a buildsystem

= Internally Buildroot touches a stamp file after completing each step
= An empty file
= Tracks successful step completion, not the rules that originated it
= |f the rules change, Buildroot is unaware

40

Buildroot dependency tracking: stamp files

= You need to manually trigger a rebuild when:

= You changed the configuation of the package or one of its dependencies
= You're developing the package and changed the rules (.mk, patches...)

= How to rebuild

= The safe option: make clean; make
= |f you know what you really need: make <PKG>-dirclean <PKG>
= Or make <PKG>-reconfigure / make <PKG>-rebuild

41

Yocto: recipe hash

Bitbake stores a hash for each task

= Hash content:
= All the recipe variables and task code (bitbake -e)
= Content of all files stored in SRC_URI

= Automatically detect recipe changes and rebuilds what's needed

= Result stores in the sstate cache for later reuse

42

Yocto: recipe hash

= Still want to force a task?

= bitbake -f -c configure <PKG>
= —f forces to run tasks even when not needed

43

Where are my output files?

Work directory layout

<TOP> <--CWD <TOP>

Loutput Ltmp
Lbuitd e

busybox
L1.27.2-r0
busybox-1.29.2 - busybox-1.27.2
- build
- image
- package
L packages-split

44

Root filesystem generation

<TOP> <--CWD <TOP>
build <--CWwD
output Ltmp
work

[_<MACHINE TUPLE>
|—core—image—minimal
L1.0-r0
_target Lrootfs
bin, usr... Lbin, usr. ..

45

Output directory layout

<TOP> <--CWD <TOP>
build <--CwWD
output L tmp
L deploy
images images
<MACHINE>
—u-boot.* u.boot.*
-*.dtb *.dtb
-*Image *Image
—rootfs.<EXT> -<MACHINE>.<EXT>

Lsdcard.img

46

Understanding what’s going on

What will it build?

Buildroot: graph-depends

= make graph-depends
= Produces output/graphs/graph-depends.pdf

47

Buildroot: graph-depends

= Build a per-package graph: <PKG>-graph-depends

= Set BR2_GRAPH_DEPS_OPTS in the environment to control the output

= BR2_GRAPH_DEPS_QOPTS="--exclude=host" make avahi-graph-depends
= Produces output/graphs/avahi-graph-depends.pdf

avahi
dbus libdaemon

l

expat
48

Yocto: taskexp

= Generating dot graphs not really usable
= Task Explorer: bitbake -g -u taskexp world
= Shows dependencies between tasks (not recipes)

~ Task Dependency Explorer = + =

dbus-daemon-proxy.do_populate_sysroot |
X diffutils.do_package_write_rpm
dbus-daemon-proxy.do_prepare_recipe_s i
e2fsprogs.do_package_write_rpm
dbus-daemon-proxy.do_unpack
eudev.do_package_write_rpm

dbus.do_build . i
expat.do_package_write_rpm

dbus.do_compile .
flex.do_package_write_rpm

—

dbus.do_configure
dbus.do_fetch

dbus.do_install

gawk.do_package_write_rpm

Dependent Tasks

dbus.do_package
dbus.do_packagedata
dbus.do_package_ga
dbus.do_package_write_rpm
dbus.do_patch

] 49

What does it do?

What went wrong?

Buildroot: default output

$ make

>>> host-e2fsprogs 1.44.2 Extracting

xzcat /home/murray/src/e2fsprogs/e2fsprogs-1.44.2.tar.xz. ..
>>> host-e2fsprogs 1.44.2 Patching

>>> host-e2fsprogs 1.44.2 Configuring

checking build system type... x86_64-pc-linux-gnu

checking host system type... x86_64-pc-linux-gnu

= “>>>" marks the started tasks
= The whole output of each step follows
= Failure? Look at the last lines

50

Buildroot: concise output

$./utils/brmake

2018-10-06T16:15:58 >>> host-zlib Patching
2018-10-06T16:15:58 >>> host-zlib Configuring
2018-10-06T16:15:58 >>> host-zlib Building
2018-10-06T16:15:58 >>> host-zlib Installing to host directory
2018-10-06T16:15:58 >>> host-util-linux 2.32.1 Patching

= Adds step start time

= Verbose output saved in br.log

51

Yocto: default output

= The default output shows the current status, no logs

= Hides completed tasks

Currently 4 running tasks (119 of 2503) 4% | ## |
0: glibc-initial-2.27-r0 do_fetch (pid 5216) 38 |##t##t###tis [4209M/s
1: glibc-2.27-r0 do_fetch - 4s (pid 5261)

2: ncurses-native-6.0+20171125-r0 do_fetch (pid 6147) | <=> |
3: elfutils-native-0.170-r0 do_fetch (pid 7143) 117 |### | 2549M/s

52

Yocto: concise “log” output

= To see the completed tasks:

= bitbake ... | cat

NOTE: Running task 119 of 2645 (.../binutils/binutils-cross_2.30.bbzde unpack)
NOTE: Running task 232 of 2645 (virtual:native:...lzo/lzo_2.10.bb:dofcompile)
NOTE: recipe binutils-cross-arm-2.30-r0: task do_unpack: Started

NOTE: recipe binutils-cross-arm-2.30-r0O: task do_prepare_recipe_sysrooth Started
NOTE: recipe elfutils-native-0.170-r0: task do_prepare_recipe_sysroot: Started
NOTE: recipe lzo-native-2.10-rO: task do_compile: Started

NOTE: recipe elfutils-native-0.170-r0: task do_prepare_recipe_sysroot: Sugceeded
NOTE: Running task 247 of 2645 (virtual:native:.../elfutils_0.170.bb:do_gonfigure)

NOTE: recipe binutils-cross-arm-2.30-r0: task do_prepare_recipe_sysroof: Silicceeded

53

Yocto: inspect build logs

= Failure?
= For each task a log file is saved
= in tmp/work/<TUPLE>/<RECIPE>/<VERSION>/temp/log.do_<TASK>
= e.g. tmp/work/x86_64-linux/gmp-native/6.1.2-r0/temp/log.do_configure

= Or re-run the failed task with verbose output to see its output on your terminal

= bitbake -v -f -c configure gmp-native

54

What is it thinking?

Buildroot: printvars

= make -s printvars
= Print all variables

» make -s VARS=BUSYBOX_’, printvars
= Only variables matching a pattern

= make -qp
= Print the whole Make database

= Variables (before expansion) and the file where they were set
= Rules (target + prerequisites + actions)

55

Yocto: bitbake -e

= bitbake -e

= Show the global environment

= Variables and the files where they were set
= bitbake -e <RECIPE>

= Show the per-recipe environment

= Variables and the files where they were set
= Tasks actions

56

Customizing the root filesystem

Buildroot: Kconfig

= The same configuration system as the kernel, Busybox, U-Boot, Barebox...
= make menuconfig, make xconfig
= .config is your current configuration

» make savedefconfig updates your defconfig with the new values

57

Yocto: .bb files

= Your “configuration” is in several .Dbb files.
= A common layout:
= Build options, toolchain, MACHINE: a conf file in your top layer
(or build/conf/local.conf)
= Target options, kernel and bootloader selection: in your layer
conf/machine/<MACHINE>.bb
= System configuration: various recipes, other places
= Packages to put in rootfs: image recipe (see later)

58

Buildroot: adding packages

= make menuconfig — Packages

= Search, add, remove, change packages
= make clean (if you changed or remove packages)

= make

59

Yocto: adding packages

= Find the package you need

= bitbake-layers show-recipes

= http://layers.openembedded.org/layerindex/branch/master/layers/
= Create your own image recipe

= Image = list of packages to but in rootfs (a subset of all the packages)

60

http://layers.openembedded.org/layerindex/branch/master/layers/

Yocto: adding packages

= Create an image recipe (<MYLAYER>/recipes—*/images/*-image—*.bb)

require recipes-core/images/core-image-minimal.bb
DESCRIPTION = "My own root filesystem"

LICENSE = "MIT"

IMAGE_FSTYPES = "tar.gz"

IMAGE_INSTALL += "htop packagegroup-debug"

= Package groups (<MYLAYER>/recipes-*/packagegroups/packagegroup—*.bb)

inherit packagegroup
RDEPENDS_${PN} = "gdb strace"

61

Typical root filesystem customizations

= And embedded systems needs customizations

= High-level choices: init system, /dev management, locales..
= Creation of users, passwords, assorted files, ..
= And many more

= Buildroot
= make menuconfig — System configuration
= Yocto

= Add appropriate lines to your conf, board or image files
= Search the Yocto reference manual https:

//www.yoctoproject.org/docs/current/ref-manual/ref-manual.html
= Grep the poky source code

62

https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html

Some system settings, side-by-side

Buildroot Yocto

System hostname hostname_pn-base-files = "mybox"
System banner DISTRO_NAME_pn-base-files = "Welcome",
DISTRO_VERSION_pn-base-files = ""

Init system VIRTUAL-RUNTIME_init_manager
/dev management VIRTUAL-RUNTIME_dev_manager

Root password IMAGE_FEATURES += "empty-root-password"
Users tables inherit extrausers;
EXTRA_USERS_PARAMS = "usermod -P 1876%18 root;"

63

Other rootfs customizations

= Buildroot: System configuration menu:

= Root filesystem overlay directories
= Post-build and post-image scripts

= Yocto
= ROOTFS_POSTPROCESS_COMMAND and IMAGE_POSTPROCESS_COMMAND

64

Tweaking recipes

Configuring Kconfig-based packages

= Buildroot
= Based on kconfig-package
= Kconfig packages: at91bootstrap3, barebox, uboot, linux, busybox, linux-backports,
swupdate, uclibc, xvisor
= Yocto

= Inherit the obscure cml1 class
= Kconfig packages in the Poky layer: linux, busybox (not U-Boot)

65

Configuring Kconfig-based packages

Description

Buildroot

Yocto

Enter menu

make <PKG>-menuconfig

bitbake -c menuconfig <RCP>

Save defconfig
Update defconfig
Extract fragment

make <PKG>-savedefconfig
make <PKG>-update-defconfig

bitbake -c savedefconfig <RCP>

bitbake -c diffconfig <RCP>

66

Yocto: (re)assigning variables

= Assignments
= F := "foo-${A}" — Immediate expansion
= F = "foo-${A}" — Expansion on usage
= Weak assignments: used for values the user is supposed to customize
= Base layer .bb: VAR ?77= "white"
= Middle layer .bbappend: VAR 7= "black"
= Top-level layer.bbappend: VAR = "green"
= The recipe will use VAR = "green"
= Append or prepend
= VAR += "val", VAR =+ "val" (adds spaces)
= VAR_append = "val", VAR_prepend = "val" (does not add spaces)
= VAR _remove = "val"

67

Buildroot: (re)assigning variables

= It's a Makefile, use the Make syntax
= Assignments

= F := "foo-$(VER)" — Immediate expansion
= F = "foo-$(VER)" — Expansion on usage

= Append or prepend
= VAR = "$(VAR) extra", VAR = "extra $(VAR)"

68

More string processing

= Buildroot

= Make has several functions for transforming text
= Example: VAR = $(filter-out bug, foo bug bar)

= Yocto

= |f Bitbake is not enough, use Python
= PV_x = "${@".'.join('${PV}'.split('.")[0:2] + ['x'1)}"
"10.11.12" — "10.11.x"

69

Yocto: changing task code

do_conf_append() {

echo CONFIG_ACS >>${D}/.config = Append or prepend code

= Final task code = concatenation of

do_install_prepend() { prepends + base + appends

mkdir -p ${D}${bindir} = Don’t mix Bash and Python

70

Buildroot: changing task code

define FOO_ENABLE_ACS
echo CONFIG_ACS >>$(@D)/.config
endef
FOO_POST_CONFIGURE_HOOKS += FOO_ENABLE_ACS

define FOO_CREATE_BIN_DIR
mkdir -p $(TARGET_DIR)/bin
endef
FOO_PRE_INSTALL_HOOKS += FOO_CREATE_BIN_DIR

Append or prepend code

Final Make rule actions =
concatenation of pre-hooks + base +
post-hooks

71

Conclusions

Questions?

Ask now...

..or during my Office Hour
Wednesday, October 24
from 10:45 to 11:45
Level -2 Built-In Seating
(near Lennox)

Thank you for your attention!

Luca Ceresoli
luca@lucaceresoli.net
http://lucaceresoli.net

© Copyright 2018, Luca Ceresoli
Slides released under
Creative Commons Attribution - Share Alike 3.0 License
https://creativecommons.org/licenses/by-sa/3.0/

72

mailto:luca@lucaceresoli.net
http://lucaceresoli.net
https://creativecommons.org/licenses/by-sa/3.0/

Extra slides

Working with local sources

= Use sources from a local directory
= Not managed by the build system
= Useful during application development
= Buildroot
= <PKG>_OVERRIDE_SRCDIR=/my/src/tree make
= Skips source, extract, patch
= rsyncs from /my/src/tree before building
= Yocto
= inherit externalsrc
= EXTERNALSRC = "/my/src/tree"
= fetch, unpack, patch
= Points S to /my/src/tree

	Introduction
	Bootstrapping
	Naming
	Layers / external trees
	Writing recipes
	Building
	Understanding what's going on
	Customizing the root filesystem
	Tweaking recipes
	Conclusions
	Appendix
	Extra slides

