Evolving ROS for Safety Critical Systems

Embedded Linux Conference 2022
Tully Foote
June 23rd 2022
Who am I?
Who We Are
About Us

• Open Robotics est. in 2012
 • Originally Open Source Robotics Foundation
• Privately-held
• 50 employees
• Global team of engineers and scientists
• Founders, key contributors, and curators of world’s most widely-used robot software
Who We Are
ROS and Ignition

ROS

- World’s most widely-used open-source SDK for robotics
- ROS is to robotics as Android is to mobility

Ignition

- Open-source robot simulation software
- Ignition is to robotics what AutoCAD is to architecture

www.openrobotics.org
Who We Are

Community

- **Users**
 - 178K/month*
 - 1.49M/year
 - 35% YoY increase
- **Page Views**
 - 24.48M/year
- **Global Impact**
 - U.S. constitutes 19% of users
- **Translations**
 - Partial translations into 14 languages

*2021 statistics
Who We Are

History of ROS

- First commit to ROS on SourceForge
- November 7, 2007
- ROS: An Open-Source Operating System
- Presented at ICRA May 17, 2009
- 2012: Debut of ROSCon
- 2013: ROS Answers surpasses 10,000 questions
- 2015: DARPA Robotics Challenge
 - 18 teams using ROS; 14 using Gazebo
- 2015: Publication of *Programming Robots With ROS*
- 2022: ROS 2: Design, architecture, and uses in the wild
 - Science Robotics Vol 7 Issue 66
What We Do
Open Source

• Drivers
 • Robotics industry booming
 • Three-fold increase in professional service robots from 2019-2023
 • Robotics applications are exploding
 • Service robots set to overtake industrial robots
 • Demand exceeds supply for robotics expertise
 • Open-source robotics software is leading the industry

• Benefits
 • Focus your efforts on value-add and differentiation vs. basic robotics
 • Faster time to market
 • 18 months to build Simbe’s Tally, rather than 22 years
 • Better products with lower maintenance and support
 • Participation in broad and growing ecosystem
What We Do

ROS

• Core Services for Robotics
 • Message passing, robotics primitives, sensor abstractions, development tools
• Multi-Platform
 • Linux, Windows, OS X, RTOS, etc.

• ROS 2 Enhanced Capabilities
 • Real-time
 • Multi-threaded
 • Multi-robot; fleets
 • Legacy/lossy network

ROS = Plumbing + Tools + Capabilities + Ecosystem
What We Do

Consulting

• Recognized Robotics Expertise
 • Stewards of ROS/ROS 2 and Gazebo
 • Exposure to hundreds of robotics projects (commercial and research)
 • Direct line to top ROS developers

• Proven Results
 • Dozens of projects completed for major organizations

• Easy to Onboard
 • Available on demand for engagements from days to months to years

• High-Velocity Development Approach
 • Unique experience using simulation to shorten development cycle and improve outcomes
Clients and Users
Commercial Adoption

Sea

Land

Air

Space
Clients and Users
Commercial Adoption

- Apex.AI
- Cobalt Robotics
- BDI’s Spot
- Embark
- Simbe Robotics
- Sony’s Aibo
Clients and Users
Commercial Adoption

Agriculture
Consumer
Healthcare
Inventory
Material Transport
Medicine
Research
Retail
Security
Transportation
Clients and Users
Commercial Adoption

American Robotics
Blue River Technology/John Deere
Iron Ox
Root.AI

Agriculture
Inventory
Material Transport

Medicine
Research
Retail
Security
Transportation
Clients and Users
Commercial Adoption

- Agriculture
- Consumer
- Medicine
- Research
- Retail
- Security
- Transportation
- Material Transport

6 River Systems
Fetch Robotics
OTTO Motors
Rapyuta Robotics
Locus Robotics
Motivation:
ROS used in research but not in commercial applications

Results of 2013 workshop
- Embedded
- Multi-robot
- Realtime
- Commercial development
 - Cross Platform

ROS 2: Address underserved use cases
- "bare-metal" micro controllers
- real-time control
- multi-robot systems (lossy networks)
- reduce the gap between prototyping and final products
Cients and Users
Case Study: iRobot

• **Problem**
 - Continue to innovate and develop new systems
 - Need to share developments across all their platforms
 - Accelerate research and development cycles

• **Solution**
 - Validate ROS 2 running on smaller embedded systems
 - Joined ROS 2 TSC and has helped drive development

• **Results**
 - All Roombas i Series and higher now use ROS 2 internally as of 2021
 - iRobot Create 3 has a ROS 2 interface for users
Clients and Users
Case Study: Apex.AI

• Problem
 • Establish a rock-solid platform for new autonomous mobility solution
 • Meet safety and reliability standards for both automakers and consumers within new Apex.AI “Android-like” software stack
 • Architect application-specific, mission-critical enhancements within ROS 2

• Solution
 • Designed ROS 2 features for enabling safety critical applications
 • Prioritized real-time-safe APIs
 • Merged code changes upstream, include code in open source releases
 • Provided expert advice through iterative design review

• Results
 • ROS 2 system redundancies ensure single failures don't trigger system-wide failures
 • Application agnostic approach for any autonomous system — cars to drones to flying taxis
Clients and Users
Commercial Adoption

Sea

Land

Air

Space
ROS In Space

2014: Robonaut 2

2019: Astrobot
VIPER

Prospecting for lunar resources in permanently shadowed regions of the lunar south pole

- **ROS** used in ground software systems
- **Gazebo** simulation used in mission development, testing, planning, operator training, etc.
- Other open source software
 - cFS/ROS bridge
 - Yamcs
 - VERVE
- NASA requires software used in *flight missions* to be space qualified
Feature of ROS 2 to support Certification Process

- Modularity
 - Allowing paring down
 - Separate parts requiring certification versus tooling
- Good abstractions
 - Decoupling independent elements
 - Support for custom allocators
- Designed to be pared down
 - Optional elements can be compiled out such as logging
 - Support for custom allocators
What we need: A version of ROS for space applications!

- A space-certifiable and reusable robotic framework
 - Designed to meet flight software standards
 - Aligned with NASA so that it can be adopted for Class A missions
- Support characteristic space robotics applications
- Enable rapid development of new robotic capabilities
- Based on open community, frameworks, and standards
An open source, “qualification-ready,” ROS-based distribution

- Support certification with DO178C and NPR7150.2
- Allow space flight projects gain a head start on their certification efforts
- Facilitate reuse across missions, reducing development effort and costs
- Focus on source code quality; use code analysis tools to assess/improve the code
 - Static analysis, testing, dispositioning and addressing issues, requirements & traceability
- Sandboxing certain language features (e.g., memory allocation, exceptions)
Provide space-specific functionality, such as

- Additional modules like star tracker, terrain hazard analysis
- Operator tools (e.g., UIs like VERVE)
- Common telemetry and command formats as ROS messages
- Bridging to existing tools and frameworks, like cFS
- Integration with CCSDS Asynchronous Message Service
SpaceROS
Progress to Date

- Space ROS github organization
- A core set of ROS packages
- Continuous Integration (CI) system for Space ROS builds
- Docker scripts for Space ROS (and MoveIt2 built against Space ROS)
- Additional static analysis tools integrated, including NASA’s Cobra and IKOS
 - AutoSAR C++ 14 coding guidelines support in the works for Cobra
 - Addressed many issues identified by static analysis tools
- SARIF output for all static analysis tools
SpaceROS
Projects in Flight

- Avoidance of dynamic memory allocation
 - Requirements, design, and implementation underway

- Eventing and Logging Subsystem
 - Requirements defined

- Dashboard
 - Based on SARIF input data collected from the analysis tools
 - Requirements defined
SpaceROS
Next Steps

● Contact me (tfoote@openrobotics.org)
● Work with the new static analysis tool integration
● Help us refine the Space ROS roadmap
● Make code contributions
 ○ https://github.com/space-ros
Medical ROS

A new domain for ROS

Strong interest following Automotive and Space proof of concept
Medical ROS Vision

A subset of ROS which can be used in medical devices

- IEC 62304 Level B or C for runtime
- IEC 62304 Level A for tools
- Wire compatible with mainline ROS for faster development and debugging
 - Researchers & Developers can use full capability

Tools to Level A
- colcon
- ament*
- Ignition simulation
- osrf_testing_tools_cpp

Runtime Libraries to Level B/C
- rcl
- rcutils
- rccputils
- rosidl_runtime_c
- rcl_interfaces
- rcl_logging*
- rmw

Compatible for R&D
- rviz
- rqt
- tracetools
- ros2 cli
- Rclpy
Open Source Distribution
- Push back as much as possible to the mainline to avoid forking

Improved QA process
- Setup a certified Quality Management System
- Improve requirements and development traceability
- Improve our testing and coverage

To enable the production of the necessary
- Safety Document
- Safety Justification Document
Medical ROS
Business Model

Building up a set of partners interested in using the product.

- Many are already using ROS 2 in their R&D and want to use it in their products.
 - They can directly contribute to the effort or contract us for new features at levels A, B or C

Open Source Distribution

- The code remains open source
 - Push back anything that is valuable to the mainline to avoid divergence
- All process improvements results are visible and integrated into the core package development process

Products

- Safety Document
- Safety Justification Document
Open development process looking forward
More partners will mean smaller individual investments
Early involvement will enable helping define the scope and process

We have anchor partners and have established client bases in healthcare.

If you’re interested please reach out to me:
Tully Foote tfoote@openrobotics.org
Thank You

- Tully Foote tfoote@openrobotics.org