
u-root: / with the
convenience of scripting
and the performance of

compilation
Ron Minnich

Google
Andrey Mirtchovski

Cisco

Outline
● What u-root is
● Why we’re doing it
● How it all works
● Try it!

○ sudo docker -g [in its own window]
○ sudo docker run --privileged -i -t rminnich/u-root:18

/bin/bash
○ cd /u-root && sh README

U-root: a small source-based root

● Standard kernel
● five Go binaries: go, 6c, 6g, 6l, 6a
● Go package source (aka libraries)
● Set of u-root source files for basic

commands (cat, dd, etc.)
● One binary for u-root: init
● in 10M (compressed :-)
● i.e., a source-based root file system

Root directory structure
go

bin src
(all of
it)
22M

pkg

go
(10M)

tool

linux_amd64

6g, 6c, 6l, 6a
(5M)

init
2.5M

src
300K

lib

libc.so
libm.so
3M

etc

resolv.
conf

Basic Model

● /bin is empty, mount tmpfs on it
● /buildbin is initialized by init with symlinks to

a binary which builds commands in /bin
● PATH=/go/bin:/bin:/buildbin
● When, e.g., cat is executed, if not in /bin,

/buildbin/cat (symlink->installcommand) runs
● /buildbin/installcommand directs go to build

the command, and then execs it

A Word on Go build

● Builds programs and packages
● Possible because of the ‘import’ keyword

and Go package structure
● No need, therefore, to build all packages to

build a program: only packages you need
● Contrast with glibc: (e.g.) sunrpc gets built,

even if you never use it

Why build a source-based root?

● Want to embed a full busybox style
environment in flash for coreboot

● The various embedded toolchain builds are
large, hard to build, hard to diagnose
○ It’s hard to create a configuration you can

understand later
● The busybox code can be hard to read
● C language and build system(s) the problem

The problem with C

● C is obsolete (for user mode that is)
● Too easy to write buggy, insecure code
● Lacking in modern features
● No dependency analysis possible
● Build systems built on build systems

○ configure, automake, libtool, ….
● Each trying to solve each other’s problems

○ Solving complexity with complexity

But C can produce compact code!

● For building a tight, small binary, busybox
continues to impress

● Can get a useful set of binaries in about 1M
○ Single Go binary: 1MiB

● But BIOS FLASH is 16-32M!(thank u EFI!)
● If we have 32MiB can we change the way

we deliver binaries?
● Could we just ship source?

Summary: Why u-root?

● Want “busybox” in 16 or 32 MiB
● Want a modern compiled language

○ Which, unfortunately, means big binaries
● Source in a modern language is much

smaller than equivalent source in C
● Conclusion: ship source, it’s small
● Build programs, libraries on-demand

○ Implies compilation must be fast, package-oriented

Enter Go
● Type safe
● Garbage collected
● Dependency analysis from source
● Very fast compilation

○ Most things compile in a second or so
● Expressive, hence small source
● Can ship source, compile on demand

Go packs a lot in a small space
● E.G.: show all net interfaces and addresses:

ifaces, _ := net.Interfaces()
for _, v := range ifaces {

addrs, _ := v.Addrs()
Printf("%v has %v", v, addrs)

}
ip: {1 1500 lo up|loopback} has [127.0.0.1/8 ::1/128]
ip: {5 1500 eth0 fa:42:2c:d4:0e:01 up|broadcast} has [172.17.0.2/16 fe80::f842:2cff:fed4:e01/64]

How u-root works
● u-root file system consists of:

○ toolchain to build go programs
○ source for packages needed for these programs
○ (still small) set of standard commands
○ One binary (init) to start things up

● Four ways to try it out
○ chroot
○ Boot kernel in qemu (i.e. --kernel)
○ Boot from disk via e.g. syslinux
○ Boot from coreboot qemu

Setting up u-root file system

● Initially have src/ (i.e. src/sh/sh.go, …)
● Script finds all packages needed, creates

○ go/bin/go (build tool)
○ go/src/pkg/…

■ coreboot case: only required packages
○ go/pkg/.../6[a,l,c,g] (compilers)

● Pull in two .so’s for compilers, resolv.conf
● builds src/init/init.go, places it in init

Setting up Root directory structure
go

bin src
(all
of
it)

pkg

go tool

linux_amd64

6g, 6c, 6l, 6a

initsrc

sh

sh.go

... libc.so
libm.so

lib etc

resolv.
conf

Commands

What we have
● sh, bin, date, cat, …
● ip (set up network)
● ping, netcat
● mount
● simple web server

What we need
● insmod, …
● dhcp
● WIFI tools
● Full mount for all

file systems

At boot, /bin/init starts
buildbin

installcommand
symlinks: for all src/
e.g.
cat->installcommand
dd->installcommand
sh->installcommand

/dev,
/proc,
...

/src/... /go/... init

Last step: run /buildbin/sh

pre-built root from
previous slide

bin

When user types /bin/date

● /bin/date not found, but /buildbin/date is
○ symlink to installcommand

● installcommand starts, grabs arg[0], runs go
build with that arg

● go build figures out what pkgs are needed,
builds them, then builds date into /bin/date

● installcommand then execs /bin/date
● 237 ms for date; 2 seconds with packages

HP FALCO 2-core chromebook, 4GiB

● First build of all packages for
/bin/installcommand ~5s
○ about 162 commands, many more files

● Subsequent commands are much faster
because more packages are already built

● Date + 2 packages is 1 second
● Once built, it’s instantaneous (statically

linked; in tmpfs!)

But I want bash!

● You want it, you got it: tinycore has it
● The tcz command installs tinycore packages
● tcz [-h host] [-p port] [-a arch] [-v version]

○ Defaults to tinycore repo, port 8080, x86_64, 5.1
● Type, e.g., tcz bash
● Will fetch bash and all its dependencies
● Once done, you type
● /usr/local/bin/bash

Status

● Work in progress
● But offers:

○ a better language than C
○ easier (much!) build path for binutils
○ Ability to use existing tools via tinycore
○ Want to know how something works? The source is

right there
● Could we write systemd/uselessd in Go?

Extending the shell
● This is the ‘cd’ builtin
● Lives in /src/sh
● When sh is built, it is

extended with this builtin
● Create custom shells with

built-ins that are Go code
● e.g. temporarily create

purpose-built shell for init
● Eliminates init boiler-plate

scripts

Interesting futures

● Can put go binaries for ARM in the root
● Could create a usb stick that boots on ARM

and x86
● And most of it is source-based
● You can pre-build some things into /bin

when you build the root image
● and later remove them, to get a new version

What is this good for?

● Knowing how things work
● Much easier embedded root than busybox
● Security that comes from source-based root
● We can verify the root file system as in

ChromeOS, which means we verify the
compiler and source, so we know what we’re
running

Considerations

● First instance of execution can be long
(since you’re building it)

● If u-root doesn’t have “it” you need a working
network to get tinycore packages

● Lots of things missing (e.g. WIFI, bluetooth
support)
○ Come and help out! You’ll learn a lot!

Where to get it

● Prebuilt docker with the whole system
○ docker.io rminnich/u-root (use tag 18 or “latest”)
○ sudo /usr/local/bin//docker run --privileged -i -t

rminnich/u-root:18 /bin/bash
○ cd /u-root && sh README to try chroot
○ /coreboot, /go, /u-root, and /linux-3.14.17 so you can

build it all from source to try it yourself
● github.com/rminnich/u-root

