u-root: / with the
convenience of scripting
and the performance of
compilation

Ron Minnich Andrey Mirtchovski
Google Cisco

Outline

What u-root is

Why we're doing it

How it all works

Try it!

o sudo docker -g [in its own window]

o sudo docker run --privileged -i -t rminnich/u-root:18
/bin/bash
o cd /u-root && sh README

U-root: a small source-based root

Standard kernel

five Go binaries: go, 6¢, 69, 6l, 6a
Go package source (aka libraries)
Set of u-root source files for basic
commands (cat, dd, etc.)

One binary for u-root: init

iIn 10M (compressed :-)

e |.e., a source-based root file system

Root directory structure

Src
300K

go

bin

(10M)

Init
2.5M

lib etc
B S i ——~——
src pkg libc.so resolv.
(all of \ libm.so conf
it) tool SM
22M ~
linux_amdo64
\ 4
69, 6¢C, 6l, 6a

(5M)

Basic Model

e /bin is empty, mount tmpfs on it

e /buildbin is initialized by init with symlinks to
a binary which builds commands in /bin

e PATH=/go/bin:/bin:/buildbin

e \When, e.qg., cat is executed, if not in /bin,
/buildbin/cat (symlink->installcommand) runs

e /buildbin/installcommand directs go to build
the command, and then execs it

A Word on Go build

e Builds programs and packages

e Possible because of the ‘import’ keyword
and Go package structure

e No need, therefore, to build all packages to
build a program: only packages you need

e Contrast with glibc: (e.g.) sunrpc gets built,
even If you never use it

Why build a source-based root?

e \Want to embed a full busybox style
environment in flash for coreboot

e The various embedded toolchain builds are
large, hard to build, hard to diagnose

o It's hard to create a configuration you can
understand later

e The busybox code can be hard to read
e C language and build system(s) the problem

The problem with C

C is obsolete (for user mode that is)
Too easy to write buggy, insecure code
Lacking in modern features

No dependency analysis possible

Build systems built on build systems
o configure, automake, libtool,

Each trying to solve each other's problems
o Solving complexity with complexity

But C can produce compact code!

e For building a tight, small binary, busybox
continues to impress

e Can get a useful set of binaries in about 1M
o Single Go binary: 1MiB

e But BIOS FLASH is 16-32M!(thank u EFI!)

e |f we have 32MiB can we change the way
we deliver binaries?

e Could we just ship source?

Summary: Why u-root?

e \Want “busybox” in 16 or 32 MiB

e \Want a modern compiled language
o Which, unfortunately, means big binaries

e Source in a modern language is much
smaller than equivalent source in C
e Conclusion: ship source, it's small

e Build programs, libraries on-demand
o Implies compilation must be fast, package-oriented

Enter Go

e Type safe
Garbage collected
Dependency analysis from source

Very fast compilation
o Most things compile in a second or so

Expressive, hence small source
Can ship source, compile on demand

Go packs a lot in a small space

e E.G.: show all net interfaces and addresses:

1faces, := net.Interfaces|()

for , v := range 1faces {
addrs, := v.Addrs()
Printf ("%$v has %v", v, addrs)

J

ip: {1 1500 lo uplloopback} has [127.0.0.1/8 ::1/128]
ip: {5 1500 eth0 fa:42:2c:d4:0e:01 up|broadcast} has [172.17.0.2/16 fe80::f842:2cff.fed4:e01/64]

How u-root works

e u-root file system consists of:
o toolchain to build go programs
o source for packages needed for these programs
o (still small) set of standard commands
o One binary (init) to start things up

e Four ways to try it out
o chroot
o Boot kernel in gemu (i.e. --kernel)
o Boot from disk via e.g. syslinux
o Boot from coreboot gemu

Setting up u-root file system

e |[nitially have src/ (i.e. src/sh/sh.go, ...)

e Script finds all packages needed, creates
o go/bin/go (build tool)
o gol/src/pkg/...
m coreboot case: only required packages
o go/pkg/.../6][a,l,c,g] (compilers)

e Pull in two .so’s for compilers, resolv.conf
e Dbuilds src/init/init.go, places it in init

Setting up Root directory structure

SIc

sh.go

go lib etc INit
bin | |src pkg libc.so resolv.
(all \ libm.so | | conf
90 of tool
it) T~
linux_amdo4

|

6g, 6¢C, 6l, 6a

Commands

What we have

sh, bin, date, cat, ...

Ip (set up network)
ping, netcat
mount

simple web server

What we need

Insmod, ...

dhcp

WIFI tools

Full mount for all
file systems

At boot, /bin/init starts

/src/... | /gol/... | init

bin

pre-built root from
previous slide

buildbin
N

installcommand
symlinks: for all src/
e.g.
cat->installcommand
dd->installcommand
sh->installcommand

/dev,
/proc,

Last step: run /buildbin/sh

When user types /bin/date

e /bin/date not found, but /buildbin/date is

o symlink to installcommand

e installcommand starts, grabs arg[0], runs go
build with that arg

e go build figures out what pkgs are needed,
builds them, then builds date into /bin/date

e installcommand then execs /bin/date

e 237 ms for date; 2 seconds with packages

HP FALCO 2-core chromebook, 4GiB

e First build of all packages for

/bin/installcommand ~5s
o about 162 commands, many more files

e Subsequent commands are much faster
because more packages are already built

e Date + 2 packages is 1 second

e Once bullt, it's instantaneous (statically
linked; in tmpfs!)

But | want bash!

e You want it, you got it: tinycore has it
The tcz command installs tinycore packages

tcz [-h host] [-p port] [-a arch] [-v version]
o Defaults to tinycore repo, port 8080, x86 64, 5.1

Type, e.qg., tcz bash

Will fetch bash and all its dependencies
Once done, you type
/usr/local/bin/bash

Status

e Work in progress

e But offers:
o a better language than C
o easier (much!) build path for binutils
o Ability to use existing tools via tinycore
o Want to know how something works? The source is
right there

e Could we write systemd/uselessd in Go?

Extending the shell

package main

import "errors"

import "os"

func init() {
addBuiltIn("cd", cd)

}

func cd(cmd string, s []string) error {
if len(s) != 1 {
return errors.New("usage: cd one-path")

}
err := o0s.Chdir(s[@])

return err

This is the ‘cd’ builtin
Lives in /src/sh

When sh is built, it is
extended with this builtin
Create custom shells with
built-ins that are Go code
e.g. temporarily create
purpose-built shell for init
Eliminates init boiler-plate
scripts

Interesting futures

e Can put go binaries for ARM in the root

e Could create a usb stick that boots on ARM
and x86

e And most of it is source-based

e You can pre-build some things into /bin
when you build the root image

e and later remove them, to get a new version

What is this good for?

Knowing how things work

Much easier embedded root than busybox
Security that comes from source-based root
We can verify the root file system as in
ChromeQOS, which means we verify the
compiler and source, so we know what we're
running

Considerations

e First instance of execution can be long
(since you're building it)

e If u-root doesn’t have “it” you need a working
network to get tinycore packages

e Lots of things missing (e.g. WIFI, bluetooth
support)

o Come and help out! You'll learn a lot!

Where to get it

e Prebuilt docker with the whole system
o docker.io rminnich/u-root (use tag 18 or “latest”)

o sudo /usr/local/bin//docker run --privileged -i -t
rminnich/u-root:18 /bin/bash

o cd /u-root && sh README to try chroot

o [coreboot, /go, /u-root, and /linux-3.14.17 so you can
build it all from source to try it yourself

e github.com/rminnich/u-root

