
Linux Quick Boot
ELC 2014

May 1st, 2014

Tristan Lelong

Senior Embedded Software Engineer

TABLE OF CONTENTS

1. Introduction

2. Linux boot process

3. Boot time optimization

4. How to keep a full featured system

5. Conclusion

Introduction

Quick Boot Introduction

ABOUT THE PRESENTER

• Tristan Lelong

• Embedded software engineer @ Adeneo Embedded

• French, living in the Pacific northwest

• Embedded software, free software, and Linux kernel

enthusiast.

4

Quick Boot Introduction

ARE WE TALKING ABOUT FASTBOOT?

This presentation is about quick boot.

• Fastboot is the protocol used by Android to communicate

with the bootloader in order to reflash a system on the

device.

• Type fastboot into google: 90% hits within first 10 pages

are about android.

Warning

Fastboot is not the subject here!

5

Quick Boot Introduction

SPEED DOES MATTER

• Critical systems

I Automotive: need to handle CAN message within a

specific time frame after boot (typically x100ms)

I Monitoring: need to reboot ASAP in case of failure

I Health: Defibrillator

I Deeply embedded computer: needs to stay up for a

long time

6

Quick Boot Introduction

SPEED DOES MATTER

Consumer are used to previous generation of non-smart

devices that starts immediately.

• Consumer products

I TV, cameras: turn on quickly whenever pressing on

the power button

I Phones: deep sleep mode allowing to have a

aggressive power management policy while keeping

responsiveness

7

Quick Boot Introduction

SPEED DOES MATTER

It is still possible to cheat.

• Display splash screen early in the bootloader (x100ms)

• Animate the splash screen while booting.

Those tricks give the end

user the illusion of a

quick boot, but this could

not apply to critical

systems (BTCS?).

Set your goals

The need can be different depending on the targeted market.

Consumer wont see much difference below 1 second.

8

Quick Boot Introduction

GOAL OF THE PRESENTATION

This presentation aims at:

• Showing different existing techniques to optimize boot time

• Explaining how to integrate those techniques

• Giving leads on how to optimize boot time for a custom

project

• Keeping an almost full-featured Linux system running

9

Quick Boot Introduction

GOAL OF THE PRESENTATION

This presentation will

• Focus on standard components of a Linux system

• Focus on ARM architecture

This presentation will not

• List all the known methods for quick boot optimizations

• Explain how to achieve the best boot time while sacrificing

many features

10

Quick Boot Introduction

INTUITION

The first things that comes in mind are usually right:

• Smaller size

I Loads faster (bandwidth of the storage mdevice)

I Loads from faster storage (NOR, MMC class 10)

• Remove uneeded features

I Smaller system (see above)

I Not wasting time

11

Quick Boot Introduction

INTUITION

But it is not always 100% accurate.

• Higher frequencies

I Better memory bandwith

I May require initialization

• More processing power

I Runs critical code faster

I High end SOC usually comes with more peripherals

12

Linux boot process

Quick Boot Linux boot process

OVERVIEW

The different steps in booting an embedded system.

• ROM code

• Secondary Program Loader

• Bootloader

• Kernel

• Userland

14

Quick Boot Linux boot process

ROM CODE

The ROM code is the first program that is run by the CPU.

• Located in a ROM on the SoC

• Low level initialization

• Cannot be modified

15

Quick Boot Linux boot process

SECONDARY PROGRAM LOADER

The ROM code only does basic initializations, and the main

RAM may not be available yet.

• Located in persistent storage (NOR, NAND, MMC)

• Low level initializations continued

• Small enough to run from internal RAM

• Can be modified (not even mandatory on some systems)

16

Quick Boot Linux boot process

BOOTLOADER

Once the external RAM is initialized, it is time to take care of

everything else.

• Located in persistent storage (NOR, NAND, MMC)

• Low level initialization continued

• High level functions

• Can be modified

17

Quick Boot Linux boot process

KERNEL

The bootloader finally retrieved the kernel from any media,

prepared the system and jumped onto the kernel entry point.

• Kernel may uncompress itself

• Kernel may relocate itself

• Kernel will initialize all its modules

• Kernel will mount the root filesystem

• Kernel will start the init process

• Can be modified

18

Quick Boot Linux boot process

USERLAND

The operating system is now up, we can start the main services

and applications.

• init will read configuration and starts all services

• Service are traditionnaly launched by shell scripts

(inittab, rcS, SXX, KXX)

• Services are started sequentially

• Can be modified

19

Boot time optimization

Quick Boot Boot time optimization

CONFIGURE THE ENVIRONMENT: BUILDSYSTEM

Before anything else, setup a build system.

• Small modification

• Many rebuilds

• No dummy error

• Time better spent optimizing

21

Quick Boot Boot time optimization

CONFIGURE THE ENVIRONMENT: BUILDSYSTEM

• Buildroot: http://buildroot.uclibc.org

• Yocto: https://www.yoctoproject.org

• Custom scripts: do-it-yourself

Toolchain recommendation

Build systems provide the option to get a prebuilt toolchain for a

quick start, or to build your own when fine tuning every bit of the

system.

22

http://buildroot.uclibc.org
https://www.yoctoproject.org
http://en.wikipedia.org/wiki/Do_it_yourself

Quick Boot Boot time optimization

CONFIGURE THE ENVIRONMENT: SCM

A source control manager is really important

• Track your modifications

• Revert a modification that is not working

• Revert a modification that is not worth the gain in time

23

Quick Boot Boot time optimization

CONFIGURE THE ENVIRONMENT: HARDWARE

Analyzing and measuring has to be done throughout the

process.

• Oscilloscope

• Identify GPIOs on the platform, LEDs, buttons

• Serial port

• JTAG [optional]

• Camera

24

Quick Boot Boot time optimization

REQUIREMENTS ASSESSMENT

All the products do not share the same requirement.

• Boot in a few seconds

• Give some feedback within a second

• Boot in a about second (= immediate for the user)

• Acknowledge messages and basic processing in less than

a second (critical system)

25

Quick Boot Boot time optimization

REQUIREMENTS ASSESSMENT

• What are the required features

• What are the critical features

• What are the optional features

26

Quick Boot Boot time optimization

METHODOLOGY

Free Electron

27

Quick Boot Boot time optimization

MEASURE AND ANALYZE

Measuring allow to target optimization and not to waste time

• Measure the 5 boot steps to know where to start

• Keep the goal in mind to know when to stop

• Decide whether a feature has to be removed or can stay

28

Quick Boot Boot time optimization

MEASURE AND ANALYZE

What are the performances of an embedded system "out of the

box" running on the i.MX6Q Nitrogen using Freescale kernel

3.0.35.

• Running buildroot default image

I System size: 2MB (initramfs)

I Kernel size: 4.6MB

I Boot time: 4.466984 seconds

• Running yocto default image

I System size: 4.6MB (ext3)

I Kernel size: 3.6MB

I Boot time: 7.095716 seconds

29

Quick Boot Boot time optimization

MEASURING TOOLS

Several opensource tools can be used to measure the different

steps in the boot time.

• Printk time (kernel): this will print a timestamp in front of

every printk done by the kernel

• Grabserial (http://eLinux.org/Grabserial): will read the

serial output and can display timestamps for each line

received

• Bootgraph (kernel/scripts): uses the dmesg output to

generate a kernel startup graph initcall_debug +

CONFIG_PRINTK_TIME + CONFIG_KALLSYMS

• Bootchart (http://www.bootchart.org): analyze the boot

sequence in userland using /proc information

30

http://eLinux.org/Grabserial
http://www.bootchart.org

Quick Boot Boot time optimization

MEASURING TOOLS

• Gpio: toogle a GPIO at well known phases boundaries

1 /* C code to set GPIO2_2 */
2 *(volatile unsigned long*)0x20a0004 = 0x00000002;
3 *(volatile unsigned long*)0x20a0000 = 0xc000f07f;
4

5 /* ARM Assembly to clear GPIO2_2 */
6 ldr r1, =0x20a0000 @ GPIO2 base register
7 ldr r5, =0x2 @ gpio2_2 as output
8 str r5, [r1, #4] @ set gpio2_2 direction
9 ldr r5, =0xc000f07d @ gpio2_2 cleared
10 str r5, [r1, #0] @ clear gpio2_2

• Camera: record with high speed camera the boot process

31

Quick Boot Boot time optimization

MEASURING TOOLS

Figure: Full bootgraph

Figure: Zoomed bootgraph

32

Quick Boot Boot time optimization

MEASURING TOOLS

Figure: Bootgraph dmesg Figure: Grabserial output

33

Quick Boot Boot time optimization

MEASURING TOOLS

• bootcmd initcall_debug printk.time=y quiet init=/
sbin/bootchartd

• requires the main script /sbin/bootchart

Figure: Bootchart

34

Quick Boot Boot time optimization

MEASURING TOOLS

Figure: GPIO: measuring the ROM Code duration

• Yellow trace: GPIO2_2: default to high on reset

• Green trace: Reset Button: low when pressed

35

Quick Boot Boot time optimization

SERIAL OUTPUT

The serial output is usually configured to 115200 bauds

• A standard u-boot output is about 500 char: 4ms

• A standard kernel output is about 30000 char: 260ms

• Really, the gap is above 1 second

Adding quiet to the kernel command line or by simply

removing printk support.

Removing the printk

Removing printk will increase the boot speed in two ways.

• No data on serial line

• Smaller kernel (500kB uncompressed)

36

Quick Boot Boot time optimization

PRESET LPJ

During the early boot process, the Linux kernel calculate the

loop_per_jiffy.

• CPU in a loop for up to 250ms on some system

• On i.MX6 it takes about 80ms

• Could be preset using configuration entry or bootargs

37

Quick Boot Boot time optimization

SMP

Booting an SMP system require a big amount of time.

• Booting 1 CPU is around 80ms

• Bootargs maxcpus=1

• Init script

echo 1 > /sys/devices/system/cpu/cpu[123]/online

38

Quick Boot Boot time optimization

U-BOOT TIMEOUT

One easy but sometimes forgotten optimization is to remove

the timeout in u-boot. It is typically between 1 and 10 seconds.

1 /* nitrogen6x.h */
2 #define CONFIG_BOOTDELAY 1

Bootdelay (sec) Percentage

0 8%

1 30%

2 3%

3 25%

5 30%

10 4%

Table: Use of the autoboot timeout

39

Quick Boot Boot time optimization

KERNEL SIZE

The loading time of the kernel from the permanent storage to

RAM takes a non neglectable time. Dividing its size by two

means saving some precious milliseconds.

The kernel size can be reduced using two methods.

• Compression

• Configuration

40

Quick Boot Boot time optimization

KERNEL COMPRESSION

The kernel can be compressed using different algorithms. Each

having different caracteristics.

• Compression speed

• Decompression speed

• Compression ratio

Need for compression

The need for compression depends on the CPU and the mem-

ory bandwidth. By measuring different configurations, one will

be able to detect the bootle-neck and select the proper solution

accordingly.

41

Quick Boot Boot time optimization

KERNEL COMPRESSION

• None: no decompression needed but big image.

• GZIP: Standard ratio, Standard

decompression/compression speed

• LZMA: Best compression ratio, but slow to

decompression/compress

• XZ (LZMA2): close to LZMA

• LZO: Bad ratio, but fast decompression/compression

42

Quick Boot Boot time optimization

KERNEL CONFIGURATION

The kernel provides a configuration mechanism allowing it to be

a match for deeply embedded system up to super computers.

Carefully enabling only the required option is the best way to

reduce kernel size as well as the number ofcode that will be ran.

Warning

• Removing some option may prevent the system to boot.

• Enabling a feature that was previously disabled doesn't

simply work.

Always proceed one chunk of option at a time and commit this

change so that you will be able to revert it.

43

Quick Boot Boot time optimization

KERNEL CONFIGURATION CONTINUED

• Mtd support

I Device Drivers -> Memory Technology Device (MTD) support

I saves about 700kB

• Block support

I Device Drivers -> Enable the block layer

I saves about 1.2MB

• Sound support

I Device Drivers -> Sound card support

I saves about 300kB

• Misc drivers

I Device Drivers

I USB, SATA, Network, MMC, Staging

44

Quick Boot Boot time optimization

KERNEL CONFIGURATION CONTINUED

• Networking stack

I Networking support

I saves about 2MB

• Kernel .config support

I General setup -> Kernel .config support

I saves about 80kB

• Optimize for size

I General setup -> Optimize for size

I saves about 500kB

45

Quick Boot Boot time optimization

KERNEL CONFIGURATION CONTINUED

• Printk support

I General setup -> Configure standard kernel features -> Enable support for printk

I saves about 500kB

• BUG() support

I General setup -> Configure standard kernel features -> BUG() support

I saves about 100kB

• Debug Filesystem

I Kernel hacking -> Compile-time checks and compiler options -> Debug Filesystem

I saves about 80kB

• Debug symbols

I General setup -> Configure standard kernel features -> Load all symbols for debugging/ksymoops

I saves about 700kB

46

Quick Boot Boot time optimization

INITRAMFS SIZE

The initramfs is the initial rootfs that will be loaded with the

kernel at boot time.

It will be used as a tmpfs (file system in RAM), therefore the

init process will run faster.

It has to contain the minimum in order run the critical services.

Other files can be mounted from persistent storage in a second

time.

initramfs compression

Do not compress initramfs if you plan on appending in to the

Linux kernel since, it will be included before compressing the

kernel.

47

Quick Boot Boot time optimization

INITRAMFS SIZE

To keep a small initramfs size, busybox is a perfect match.

• http://www.busybox.net

• http://wiki.musl-libc.org/wiki/Alternative_libraries

48

http://www.busybox.net
http://wiki.musl-libc.org/wiki/Alternative_libraries

Quick Boot Boot time optimization

MKLIBS [STEP 1]

To make sure that the initramfs is as small as possible, there is

a tool that will help automatize the process: mklibs

• Analyze ELF binaries to detect symbols and dependencies

• Copy only required library to satisfy dependencies

• Doesn't detect dlopen

There are 2 versions.

• Debian: python

• Gentoo: shell

The use of mklibs can be a little bit tricky, therefore, it is

recommended to use a buildroot

BR2_ROOTFS_POST_BUILD_SCRIPT for instance.

49

Quick Boot Boot time optimization

MKLIBS [STEP 1]

Example:

1 MKLIBS=$(which mklibs)
2 SYSROOT="-L $BASE_DIR/target.full/lib $BASE_DIR/target.full/usr/

lib"
3 OUTPUT="$BASE_DIR/target/lib/"
4 BIN="$BASE_DIR/target/bin/*"
5

6 export OBJDUMP=arm-buildroot-Linux-uclibcgnueabi-objdump
7 export OBJCOPY=arm-buildroot-Linux-uclibcgnueabi-objcopy
8 export GCC=arm-buildroot-Linux-uclibcgnueabi-gcc
9

10 $MKLIBS $SYSROOT -d $OUTPUT $BINS

50

Quick Boot Boot time optimization

INIT SCRIPT CUSTOMIZATION

Buildsystem / distributions provide a init binary that will read a

configuration file and start services in a specific order.

It is a good idea to start critical services early in the boot

process and make sure that they depend on as few other

services as possible.

51

Quick Boot Boot time optimization

INIT SCRIPT CUSTOMIZATION

sysV init with its inittab and rcS is used a lot in embedded

systems.

• init

I init is available in busybox

I init is an ELF binary

• inittab

I inittab is a configuration file

I inittab offers a respawn function

I inittab eventually loads rcS

• rcS

I It is a shell script

I It fork/exec all user services

52

Quick Boot Boot time optimization

INIT SCRIPT CUSTOMIZATION

1 # Startup the system
2 null::sysinit:/bin/mount -t proc proc /proc
3 null::sysinit:/bin/mkdir -p /dev/pts
4 null::sysinit:/bin/mkdir -p /dev/shm
5 null::sysinit:/bin/mount -a
6 null::sysinit:/bin/hostname -F /etc/hostname
7 # now run any rc scripts
8 ::sysinit:/etc/init.d/rcS
9

10 # Put a getty on the serial port
11 ttyS0::respawn:/sbin/getty -L ttyS0 115200 vt100
12

13 # Stuff to do for the 3-finger salute
14 ::ctrlaltdel:/sbin/reboot
15

16 # Stuff to do before rebooting
17 null::shutdown:/etc/init.d/rcK
18 null::shutdown:/bin/umount -a -r
19 null::shutdown:/sbin/swapoff -a

53

Quick Boot Boot time optimization

GOING FURTHER

Going further

54

Quick Boot Boot time optimization

U-BOOT FALCON MODE

The i.MX6 SoC family doesn't need a SPL thanks to the IVT

header and DCD table.

• Bootloader entry point

• Device Configuration Data

When the bootloader starts, the external memory and major

clocks are initialized.

55

Quick Boot Boot time optimization

U-BOOT FALCON MODE

SPL has a secondary feature named Falcon mode that allows

skipping the bootloader step and directly run the Operating

System.

1 /* SPL target boot image */
2 #define CONFIG_CMD_SPL
3 #define CONFIG_SPL_OS_BOOT /* falcon mode */
4 #define CONFIG_SYS_SPL_ARGS_ADDR 0x4f542000
5

6 /* SPL Support for MMC */
7 #define CONFIG_SPL_MMC_SUPPORT
8 #define CONFIG_SPL_GPIO_SUPPORT
9 #define CONFIG_SPL_MMC_MAX_CLK 198000000
10 #define CONFIG_SPL_BOOT_DEVICE BOOT_DEVICE_MMC1
11 #define CONFIG_SPL_BOOT_MODE MMCSD_MODE_RAW
12 #define CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_SECTOR 2
13 #define CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTOR 0x400
14 #define CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTORS 1
15 #define CONFIG_SYS_MMCSD_RAW_MODE_KERNEL_SECTOR 0x800

56

Quick Boot Boot time optimization

U-BOOT FALCON MODE

The SPL has to be implemented for every board / SOC / CPU if

not already done (TI boards: MLO).

• Generic
I Common/spl/spl.c

I Common/spl/spl_fat.c

I Common/spl/spl_mmc.c

I Common/spl/spl_nand.c

I Common/spl/spl_nor.c

I ...

• ARM specific
I Arch/arm/lib/spl.c

• SOC specific
I Arch/arm/cpu/armv7/mx6/spl.c

I Arch/arm/cpu/armv7/omap-common/boot-common.c

• Board specific
I Board/freescale/p1022ds/spl.c

57

Quick Boot Boot time optimization

U-BOOT FALCON MODE

Handful of functions need to be implemented.

• board_init_f: SPL

• spl_board_init: SPL

• spl_boot_device: SPL

• spl_boot_mode: SPL

• spl_start_uboot: Falcon

58

Quick Boot Boot time optimization

U-BOOT FALCON MODE

One command to generate the context:

#define CONFIG_CMD_SPL

• Run bootcmd

• Read bootargs

• Generate ATAGS

• Generate FDT

1 U-boot> spl export atags ${loadaddr}
2 ## Booting kernel from Legacy Image at 12000000 ...
3 Image Name: Linux-3.0.35
4 Image Type: ARM Linux Kernel Image (uncompressed)
5 Data Size: 4865520 Bytes = 4.6 MiB
6 Load Address: 10008000
7 Entry Point: 10008000
8 Verifying Checksum ... OK
9 Loading Kernel Image ... OK
10 Argument image is now in RAM at: 0x10000100

59

Quick Boot Boot time optimization

U-BOOT FALCON MODE

The spl_start_uboot function can be static, but can also read

a GPIO to decide at run time to boot the OS or jump to u-boot.

60

Quick Boot Boot time optimization

CUSTOM INIT

Using our custom application as init

• Starts all dependencies for the critical application

• Avoid forking: this takes time (100us)

• Run the application code

Main app running as PID 1

Here, there is no management of the background processes and

the application should never die!

61

Quick Boot Boot time optimization

DEFERRED INITCALLS

Deferred initcall is a way to initialize kernel feature in phases.

1. Run all initcalls but the deferred ones

2. Run init process

3. init process signal the kernel to run remaining initcalls

deferred initcall patch

Support for deferred initcalls is not integrated into Linux

mainline and requires a patch to be applied (available from

http://eLinux.org/Deferred_Initcalls):

• 2.6.26, 2.6.27: patch by Tim Bird

• 2.6.28: patch by Simonas Leleiva

• 3.10: patch by Alexandre Belloni

62

http://eLinux.org/Deferred_Initcalls
http://eLinux.org/images/1/18/Deferred_initcalls.patch
http://eLinux.org/images/b/b4/Deferred_initcalls-2.6.28.patch
http://eLinux.org/images/5/51/0001-Port-deferred-initcalls-to-3.10.patch

Quick Boot Boot time optimization

DEFERRED INITCALLS

initcall is a macro that puts the initialization function of every

module in a specific section of the ELF binary.

1 module_init(my_module_init);
2 module_exit(my_module_exit);

At boot time, the kernel runs all the initcall functions before

even starting the init process.

Some kernel modules are not required for critical application.

Using a small code modification, it is possible to tell the kernel

to skip those by putting them in a new section.

1 #define deferred_initcall(fn) \
2 static initcall_t __initcall_##fn \
3 __used __section(.deferred_initcall.init) = fn

63

Quick Boot Boot time optimization

DEFERRED INITCALLS

To identify which module should be deffered, there is no

configuration. Each modules needs to be specifically modified.

1 deferred_module_init(my_module_init);
2 module_exit(my_module_exit);

And the init process needs to notify the kernel whenever it is ok

to intialize those modules.

1 root@target:~# cat /proc/deferred_initcalls

64

Quick Boot Boot time optimization

CUSTOM TOOLCHAIN

Not all toolchains are created equal. Changing toolchains, will

usually make you gain a few hundred of ms.

• Prebuilt toolchains are generic and support many SOCs

• Can use the -mcpu= -march= -mtune= options

The c library also matters.

• Uclibc: http://www.uclibc.org/

• Musl libc: http://www.musl-libc.org

• Dietlibc: http://www.fefe.de/dietlibc

• Newlib: http://sourceware.org/newlib

65

http://www.uclibc.org/
http://www.musl-libc.org
http://www.fefe.de/dietlibc
http://sourceware.org/newlib

Quick Boot Boot time optimization

MKLIBS [STEP 2]

Mklibs has a specific feature to strip uneeded symbols from

libraries.

• Requires a specific toolchain with libxxxx_pic.a included

1 MKLIBS=$(which mklibs)
2 SYSROOT="$BASE_DIR/target.full/lib"
3 OUTPUT="$BASE_DIR/target/lib/"
4 BIN="$BASE_DIR/target/bin/*"
5

6 export OBJDUMP=arm-buildroot-Linux-uclibcgnueabi-objdump
7 export OBJCOPY=arm-buildroot-Linux-uclibcgnueabi-objcopy
8 export GCC=arm-buildroot-Linux-uclibcgnueabi-gcc
9

10 $MKLIBS -L $SYSROOT -d $OUTPUT $BINS

66

Quick Boot Boot time optimization

STATIC /DEV

• udev

• mdev (populating using mdev -s can take about 100ms)

If the system doesn't require hotplug, static device nodes or

devtmpfs are faster.

A Linux system requires:

• /dev/null

• /dev/console

1 mknod -m 622 /dev/console c 5 1
2 mknod -m 666 /dev/null c 1 3

67

Quick Boot Boot time optimization

IS INITRAMFS REALLY FASTER

initramfs runs from RAM and therefore has a better

bandwidth.

• It makes the kernel image bigger

• Copies the data twice

• Load the whole data inconditionnally

Some measures show:

• Using a 1MB cpio (500kB cramfs), the gap is 400ms with

initramfs being faster.

• Using a 10MB cpio (5MB cramfs), the gap is 100ms with

initramfs being faster.

• Using a 18MB cpio (13MB cramfs), the gap is 300ms with

cramfs being faster.

68

How to keep a full featured system

Quick Boot Full featured

TRADEOFF WHEN DOING QUICK BOOT

• Reducing the size of the kernel will cause dropping support

for some peripherals

• Reducing the size of the userland will cause losing extra

functionnality

This works fine for specialized systems with only one well

identified task.

70

Quick Boot Full featured

TRADEOFF WHEN DOING QUICK BOOT

Smart devices requires more and more features.

• Connectivity: WiFi, Bluetooth, NFC

• Rich user interfaces: full blown webserver, graphical

toolkit, opengl library

Those devices need a Linux system that is not completely

stripped down.

71

Quick Boot Full featured

KERNEL SIDE

When configuring there are usually 3 options.

• Disabled

• Built-in

• Module

The third option is interesting: hotplug kernel features.

modules

Not all the entries in the kernel configuration can be built as ex-

ternal modules. Only tristate Ex: Networking support

72

Quick Boot Full featured

KERNEL SIDE

The goal is to add all the extra features as external kernel

modules.

• Build using the make modules rule

• Install using the make modules_install rule along with

INSTALL_MOD_PATH=<rootfs path>

• Store them in persistent storage (not in uImage)

• Load them after running critical application or on demand

using udev/mdev

73

Quick Boot Full featured

USERLAND SIDE

From

• Tiny tmpfs rootfs

• Custom init started

• Main application running

To

• Full featured rootfs

• Standard init running

74

Quick Boot Full featured

USERLAND SIDE

The solution is:

• Mounting a new rootfs

• Preparing its content

• Replace the previous /

• Run init

For this 2 alternatives:

• pivot_root

• switch_root

75

Quick Boot Full featured

PIVOT_ROOT

pivot_root is the simple old tool to do the job.

• It only changes the rootfs of the current process

• It switches new-root and old-root

• Requires chroot to do a complete switch

• Doesn't allow to run a new init

1 root@target:~# mount /dev/mmcblk0p1 /new-root
2 root@target:~# mount --move /sys /newroot/sys
3 root@target:~# mount --move /proc /newroot/proc
4 root@target:~# mount --move /dev /newroot/dev
5 root@target:~# cd /new-root
6 root@target:~# pivot_root . old-root
7 root@target:~# exec chroot . sh <dev/console >dev/console 2>&1
8 root@target:~# umount /old-root

76

Quick Boot Full featured

SWITCH_ROOT

switch_root is much more integrated. This is the solution used
in initramfs.

• It switches rootfs

• It exec chroot and release the old console

• It removes all the files from old-root (useful for tmpfs)

• It runs the new-root filesystem init

1 root@target:~# mount /dev/mmcblk0p1 /new-root
2 root@target:~# mount --move /sys /newroot/sys
3 root@target:~# mount --move /proc /newroot/proc
4 root@target:~# mount --move /dev /newroot/dev
5 root@target:~# exec switch_root /newroot /sbin/init

77

Conclusion

Quick Boot Conclusion

RESULTS & DEMO

Progression

• Standard system: 4.466984 seconds

• bootdelay + bootargs: 2.324392 seconds

• Falcon mode: 1.737441 seconds

• Stripped kernel: (down to 1.9MB with

initramfs)1.405953 seconds

• Stripped initramfs: 1.162203 seconds

• Deferred initcall: 0.886289 seconds

79

Quick Boot Conclusion

CONCLUSION

Quick boot is always a matter of trade-off.

80

Quick Boot Conclusion

CONCLUSION

• Quick boot used to be black magic

• Quick boot used to be completely target specific

BUT

• Many open source solutions exist

• Several recipes aiming for "generic" solutions

81

Quick Boot Conclusion

QUESTIONS

82

Quick Boot Conclusion

REFERENCES

• http://www.denx.de/wiki/U-Boot

• https://www.kernel.org/

• http://www.etalabs.net/compare_libcs.html

• http://eLinux.org/Deferred_Initcalls

• http://eLinux.org/Boot_Time

• http://free-electrons.com/doc/training/boot-time/slides.pdf

83

http://www.denx.de/wiki/U-Boot
https://www.kernel.org/
http://www.etalabs.net/compare_libcs.html
http://eLinux.org/Deferred_Initcalls
http://eLinux.org/Boot_Time
http://free-electrons.com/doc/training/boot-time/slides.pdf

	Introduction
	About the presenter
	Are we talking about Fastboot?
	Speed does matter
	Goal of the presentation
	Intuition

	Linux boot process
	Context
	ROM code
	Secondary Program Loader
	Bootloader
	Kernel
	userland

	Boot time optimization
	Let start by
	Configure the environment
	Requirements assessment
	Measure and analyze
	Measure and analyze
	Measure and analyze
	Measure and analyze
	Then the basic optimizations
	remove logs on serial
	Preset LPJ
	SMP Systems
	remove u-boot timeout
	reduce kernel size
	reduce initramfs size
	using mklibs [step 1]
	customize initscripts
	Going further
	use falcon mode
	customize init
	using deferred initcalls
	using deferred initcalls
	using using custom toolchain
	build using mklibs [step 2]
	static dev
	initramfs

	How to keep a full featured system
	Tradeoff when doing quick boot
	kernel modules
	switch_root

	Conclusion
	demo

