
Keeping up with LTS
Linux Kernel Functional

Testing on Devices
Tom Gall

Director, Linaro Mobile Group

Who is Linaro?

● Linaro is leading software
collaboration in the ARM
ecosystem

● Instead of duplicating effort,
competitors share development
costs to accelerate innovation and
time to market

● Linaro is member funded and
delivers output to members, and
into open source projects

Open Source Project Contributions - Partial List

Linux Kernels on Devices

● Android Common
○ Tracks LTS (4.4, 4.9, 4.14)
○ Tracks Mainline

Quick review about upstream...

And then you see this...
● 4.4.13 is positively ancient

○ Released: June 8th 2016
● 4.4.78 better but

○ Released: July 21st 2017
● Security fixes are being cherry

picked, however
○ LTS security fixes aren’t

necessarily labeled as
security fixes

○ LTS tests with all patches in
an LTS release, not some
cherry pick

○ Cherry picking can entirely
miss complicated interactions
where other patches were
required

Project Sharp Introduction

● Catch kernel regressions across architectures and kernel versions before
they make it into LTS releases or Android Common

○ 4.4, 4.9, 4.14, current stable, mainline
○ X86_64, ARMv7, ARMv8
○ GCC and soon clang
○ 48 hour window (build -> results -> triage -> bisect)

● Help make more older LTS kernels more viable
● Examine communities for fixes
● Display testing data and test histories
● Empower developers
● Triage problems
● Add to kernel testing effort

Making Community and Android Kernels Better

LKFT compared with KernelCI

LKFT
Functional Testing as a first-order design
requirement

Full userspace

Functional Test Coverage

Limited hardware due to userspace
requirements

Linaro Member Needs Driven

Linaro Member Goal Driven - Sharp, extend LTS,
LSK testing, et al.

Does boot-test limited hardware

Limited only by Linaro & member development
pace

LKFT and KernelCI will cautiously converge when/where it makes sense

KernelCI
Boot Testing as a first-order design requirement

Minimal Userspace

Boot Test quickly

Larger class of hardware supported

Community Consensus Driven

Linux Community Goal Driven

Can functional test w/ minimal userspace

Limited by pace of community consensus

Open Devices only

Cannot publish results under access control

LKFT

The mission of LKFT is to perform functional regression testing on
select Linux kernel branches in real time (as they’re updated) and
report any regressions as quickly as possible. This is performed by
executing a variety of functional-tests on a selection of user-space
environments such as Open Embedded and Android.

The goals of LKFT are to shorten derivative Linux kernel release
intervals, increase the confidence of upstream Linux kernel engineers
in the quality of their releases, and increase the confidence of
downstream adopters of those Linux kernel trees. Ultimately the goal
is that LKFT will encourage downstream hardware vendors to more
frequently update the Linux kernel that runs on their devices in order
for consumers to benefit from bug and security updates.

LKFT - Linux Kernel Functional Test framework.

LKFT System Overview
1. Upstream/Internal tree changes
2. Fetch git kernel tree repo
3. Build system images
4. Publish image builds to snapshot

server
5. Submits jobs to the Labs (LAVA -

Linaro Automation Validation
Architecture)

6. LAVA request build download
7. Schedule jobs on target hardware
8. Perform tests on target hardware
9. Store results to LAVA database

10. Results made available on LAVA
frontend

11. Qa-reports pulls Results data from
LAVA database

12. Present results in qa-reports
dashboard

13. Send Email reports

LKFT Infrastructure

● Commit triggered image building by using a Jenkins instance to build OE &
AOSP images and submit jobs to LAVA: https://ci.linaro.org/

The infrastructure for LKFT is composed of several autonomous components

● Device automation to support scheduling, image flashing, automated
testing, and results gathering (and storage) via a dedicated LAVA
instance: https://lkft.validation.linaro.org

● Email reporting and results dashboard via a dedicated Squad instance:
https://qa-reports.linaro.org/lkft
https://qa-reports.linaro.org/android-lkft

https://ci.linaro.org/
https://lkft.validation.linaro.org
https://github.com/Linaro/squad
https://qa-reports.linaro.org/lkft
https://qa-reports.linaro.org/android-lkft

When an RC occurs

● 1 build for each architecture/board combo
● 20 LAVA test jobs per kernel version
● 5572 individual tests per kernel version

4.4, 4.9, 4.14, 4.15, mainline, next

What hardware is in use?

Experience with Devices

● 96Boards an obvious ARM platform
○ Small form factor
○ Suited to large scale deployments

● Reliable connectivity costs money
○ High quality, shielded USB cables
○ Reliable, software controllable, USB hubs

● Firmware updates cost engineering time
○ Changes in interaction breaks automation

● Scaling up challenges
○ Four cables per board

■ Serial, USB OTG, Ethernet and power
■ Power bricks take space
■ Solutions being sought

kselftest - Linux Kernel Testing Framework

● Use the latest stable version of the test against all LTS kernel releases
○ This was somewhat controversial
○ Can be challenging due to failures caused by mismatched versions
○ Upstream isn’t always interested in running this combination or addressing issues

discovered by it
● Up to various kernel maintainers to either use or ignore
● Testcase consistency (design, setup, running)
● Reporting infrastructure could be improved. (TAP13)
● Pushed many patches to improve testing infrastructure and address

obvious bugs
● A good start to kernel testing, we’d like to see more focus on it’s

improvement

https://kselftest.wiki.kernel.org

LTP - Linux Test Project

● We don’t run the entire set due to suitability
○ 19 suites currently in use (syscalls, timers, …)

● Test suite is updated every 4 months as per upstream releases (latest
20180118)

● We have a CI loop with LTP master running on mainline to improve future
releases

https://linux-test-project.github.io

Experiences with ‘complicated’ test suites

● Automation of test runs?
○ Running ‘tradefed family’ tests (VTS, CTS) requires host side.
○ Some LTP tests make hidden assumptions about the hardware they run on
○ Running pre-built version of kselftests brings a lot of compatibility issues

● Reporting?
○ There is no unified standard for reporting results/logs
○ VTS logs are reported differently than CTS even though they use the same shell (tradefed)
○ Kselftests logs are saved in /tmp
○ Kselftests apparently support TAP13, but not all tests implement this approach (*)

● Skipped tests
○ There are a lot of tests failing on arm/arm64
○ Tests make assumptions which are not always met (for example sources of entropy)

Experiences with Triaging Android

● Android Common has mainline, 4.4, 4.9, 4.14
○ A set of (decreasing in size) out of tree kernel patches are included in the mix

● On Android we don’t run the exact same of tests as Open Embedded
○ LTP has a number of tests designed specifically for Linux
○ Dependencies not satisfied, etc

● VTS does run a subset of kselftest, LTP
● CTS is uniquely an Android testsuite

○ User space tests can push the kernel in interesting ways Ex: just using the network or BT
● Open Embedded (currently) leads the charge to look for kernel

regressions, class of failures detected tend to be Android specific

Keeping up with LTS

● 4.4, 4.9, 4.14 generally have 1, maybe 2 cycles per week
○ Couple dozen patches to couple hundred

● Patches included in RC have 48 hours
● Build -> Run -> Report Results

○ Triage Errors -> Bisect -> Fix
● Schedule is lose (on purpose!)
● RC branches are rebased frequently, making building and reproducibility

tricky

Expectations

Example : Pushing results upstream

● stable@vger.kernel.org
● git repo:

https://git.kernel.org/pub/scm/
linux/kernel/git/stable/linux-st
able-rc.git

● Goal: Quick summary
○ Or Bisected failure

Email!

mailto:stable@vger.kernel.org
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable-rc.git
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable-rc.git
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable-rc.git

Example : a test report, also available via email

Example : a test report

Example : Where is it failing?

Example : How about a log?

Example : What does the trend look like?

Example : So we create a bug ...

Example : Turns out it was a test case issue...

Example : Yet, that’s not always the case

Getting involved

● Linux-stable
○ https://www.kernel.org/doc/html/v4.15/process/stable-kernel-rules.html
○ LTS RCs, testing results, candidate patches
○ Mailing List : stable@vger.kernel.org

● Kselftest
○ https://kselftest.wiki.kernel.org
○ linux-kselftest@vger.kernel.org

● LTP
○ https://linux-test-project.github.io

Making the Universe Better

● Finding kernel regressions is important
○ More boards
○ More eyes

● Exercise more kernel functionality
○ More tests!
○ More testing!

In Summary

KernelCI Capabilities Compared to LKFT

At the time LKFT was created KernelCI did not have any aspirations for
functional test (or they weren’t public).

From the beginning LKFT has been focused on functional testing specific
kernel trees (that match Linaro’s membership motivations).

Even now, as support for kselftest is being added to KernelCI, there is minimal
filesystem support, so it does not yet match, 1-for-1, the functional test
capabilities of LKFT.

Why LKFT and not a functional test framework extension of KernelCI?

LKFT Mission & Reach
As part of Linaro’s mission to improve the Arm
architecture ecosystem, the LKFT team reports discovered
regressions to Linaro kernel developers, Linaro members,
and upstream Linux kernel engineers.

It is important to the Arm ecosystem that Linaro also fix as
many failures as are found. The LKFT team invests time
into identifying, reporting, and fixing upstream kernel
regressions, identifying kernel regressions in select
member-hardware SoC (system-on-a-chip) trees, fixing
test-suites by contributing to upstream testing projects,
fixing kernel configurations, improving full OS stack
integration (firmware, kernel, userspace), and improving
Arm device automation integration.

lkft.linaro.org and qa-reports.linaro.org

https://qa-reports.linaro.org/lkft is a website that provides
full details of the latest and historical functional test
results, as well as a variety of comparison and reporting
tools. Its purpose is to aide kernel triage engineers in
discovering the cause of functional test failures.

https://lkft.linaro.org is a website for kernel engineers,
business partners, and managers to get up-to-date
information on functional test results against the latest
commits to a variety of Linux kernel source trees.

https://qa-reports.linaro.org/lkft
https://lkft.linaro.org

Lemaker HiKey
HiSilicon Octa 64 bit A53/Mali

TI Beagleboard X15
AM5728 32bit A15

Qemu

ARM Juno
64 bit Axx/Axx/Mali

Generic x86
X86-64 64 bit

