

 WPE WebKit

HTML5 user interfaces for embedded devices

jjsanchez@igalia.com | www.igalia.com

Juan José Sánchez Penas
Embedded Linux Conference

Prague, October 2017

● Co-founder of Igalia in 2001. 60 engineers. Global

● Open source consultancy: browsers, multimedia, graphics
compilers, networking, ...

● Igalia among the top contributors to upstream web browsers
WebKit/JSC, Chromium/V8, Firefox/Servo/SpiderMonkey

● Working with the industry: tablets, phones, smart tv, set-top-
boxes, automotive and several other embedded devices
manufacturers

Myself, Igalia and Web Browsers

jjsanchez@igalia.com | www.igalia.com

● Part I: Why WPE? Problem and proposed solution

● Part II: What exactly is WPE? Architecture and features

● Part III: Where is WPE going? Current status and future

Outline of the talk

jjsanchez@igalia.com | www.igalia.com

PART 1

Why WPE?

Problem and proposed solution

jjsanchez@igalia.com | www.igalia.com

● Embedded devices are getting sophisticated

● Many have (or will have) GNU/Linux with a touch
screen and will run apps

● The web is powerful, flexible and a comfort zone for
many application developers

● Frequent use case: full-screen (kiosk mode web apps)

● Still low-end or mid-end hardware (limited resources,
optimizations needed)

The problem: HTML5 and embedded devices

jjsanchez@igalia.com | www.igalia.com

● Focus on lightweight

● No need to solve all the use cases and needs

● Open source options we can base it on:

● Firefox (Servo) / SpiderMonkey

● Chromium / Blink / V8

● WebKit / JSC

The solution: browser for embedded devices

jjsanchez@igalia.com | www.igalia.com

● Years ago Mozilla decided not to target other browser
developers

● Several open source browsers moved away from Gecko to
WebKit about 10 years ago

● Firefox/Gecko has a quite monolithic architecture today

● Things might get better with Servo, but it is too soon

Firefox (Servo) / SpiderMonkey ?

jjsanchez@igalia.com | www.igalia.com

● Very powerful and feature complete

● Not a flexible architecture

● No stable API provided for derived browsers (fork needed)

● Some interesting solutions:

● Chromium Embedded Framework (CEF)

● QtWebEngine

● Not particularly optimized for low-end hardware, Wayland
support not ready in Linux yet, licensing issues,...

Chromium / Blink / V8 ?

jjsanchez@igalia.com | www.igalia.com

● Also powerful and complete (Safari for OSX and iOS)

● Very flexible architecture (ports)

● Ports provide a stable API and can be part of upstream

● Available ports not ideal for our use case:

● Upstream: iOS, OSX, GTK+

● Downstream: EFL, Qt, Sony,...

● Solution: creating a WebKit port for embedded devices

WebKit, then ?

jjsanchez@igalia.com | www.igalia.com

PART 2

What is WPE?

Architecture and features

jjsanchez@igalia.com | www.igalia.com

● Web rendering engine. The engine is the product
● Open source (and open development) since 2005
● Fexible architecture:

 WebKit

jjsanchez@igalia.com | www.igalia.com

WebKit: thin layer to link against
 from the applications

WebCore: rendering, layout,
 network access, multimedia,
 accessibility support...

JS Engine: the JavaScript engine.
 JavaScriptCore by default.

Platform: platform-specific hooks to
 implement generic algorithms

WebKit ports: examples

jjsanchez@igalia.com | www.igalia.com

● Main use case: full-screen content

● Fast and lightweight, minimal set of dependencies

● Most HTML5 features need to be supported

● WebGL

● Accelerated canvas

● Hardware accelerated CSS 3D transformations

● Hardware accelerated video playback

A new WebKit port: WPE – Key requirements

jjsanchez@igalia.com | www.igalia.com

● Derives from WebKitGTK+. Part of the codebase shared

● Toolkit and platform agnostic

● GStreamer for media. JSC as JavaScript engine
● Reduces the dependencies to a few common libraries:

● Glib, FreeType, HarfBuzz, GnuTLS, pixman, cairo, libsoup

● GLES 2.0 for hardware accelerated rendering

● Multiprocess: UI, Web, Network and Storage in different processes

● Intensive threading in composition, image decoding, media playback

A new WebKit port: WPE – Architecture

jjsanchez@igalia.com | www.igalia.com

● Main goal: efficient cross-process GPU buffer sharing

● Wayland, libgbm and other native implementations

● Necessary to glue the backend facilities with the
provided EGL platform

● Renderer backend provides rendering target

● View backend provides a way to display the rendered
buffer on screen

● Vulkan support down the line

A new WebKit port: WPE – Backends

jjsanchez@igalia.com | www.igalia.com

● Libgbm: Intel, AMD, open-source NVidia drivers for embedded
devices (i.e. Jetson) -- specific to the Mesa library

● Wayland-egl: uses Wayland as the protocol internally, can be used
by Mesa as well as ARM Mali drivers

● LibWPEBackend-rdk: covers 4-5 different stacks (RPi, IntelCE, bcm-
nexus via the native API, bcm-nexus via Wayland, westeros - RDK-
oriented compositor)

● Working on an experimental libWPEBackend-android

A new WebKit port: WPE – Current backends

jjsanchez@igalia.com | www.igalia.com

● Reference hardware: Rpi 0-3 (desktop used for development too)

● A functional Raspberri Pi image can be about 40MB

● Low memory footprint: possible to define limits to consumption
<100MB for a standard configuration

● Able to play YoutubeTV on a Rpi 0-1:

● Using textured video

● Raspberry Pi 0/1 is ~1000 DMIPS

A new WebKit port: WPE – Lightweight

jjsanchez@igalia.com | www.igalia.com

● Hardware accelerated decoding where GStreamer
plugins are available (Raspberry Pi and Broadcom
Nexus)

● Hardware accelerated video rendering using GLES
(allows CSS 3D transformations on the video)

● External rendering (hole punch) when required

WPE – strong focus on media (I)

jjsanchez@igalia.com | www.igalia.com

● Media Source Extensions (MSE) support
● MP4 done, WebM in progress (VP8 and VP9)
● Youtube conformance 2016 passed, 2018 in progress

● Encrypted Media Extensions (EME) support
● 0.1b (V1) done, with ClearKey and PlayReady
● Proposed candidate (V3) under development:

● Object oriented and promise based
● Clearkey (W3C compliance and testing purposes)
● PlayReady and Widevine (using OpenCDM)

● WebRTC support
● Prototype done with OpenWebRTC (limitations)
● Now adding libwebrtc in collaboration with Apple

WPE – strong focus on media (II)

jjsanchez@igalia.com | www.igalia.com

PART 3

Where is WPE going?

Current status and future plans

jjsanchez@igalia.com | www.igalia.com

● Port started in 2014 as an experiment

● Heavily developed during 2015-2017

● Integrated in WebKit upstream since May 2017

● Stable Igalia team working on it

● Community growing

● Functionally it is quite complete today!

WPE current status: upstream

jjsanchez@igalia.com | www.igalia.com

● Media&entertainment industry:

 Initially sponsored by Metrological

 RDK consortium adopted the technology

 Used by Comcast, Liberty Global and others

 >10M set-top-boxes with WPE. Number growing

● Since 2017: several new use cases, various kinds of
embedded devices adopting industrially WPE ==> More
hardware supported

WPE current status: adoption

jjsanchez@igalia.com | www.igalia.com

● Stable release cycles:
● Every 6 months (sync with WebKitGTK+)
● They will be preview releases for now

● Improved QA infrastructure
● More tests, more architectures, more target

devices
● More documentation (project website)

WPE: ongoing and future efforts (I)

jjsanchez@igalia.com | www.igalia.com

● New graphics architecture
● Further work on multimedia standards
● Networking & security
● Other Web Platform standards (WebDriver,

WebGL2, WebVR,...)
● JSC improvements on 32bits (MIPS, ARMv6,

ARMv7)
● Android prototype

WPE: ongoing and future efforts (II)

jjsanchez@igalia.com | www.igalia.com

● Upstream WPE:
https://webkit.org/getting-the-code/

● Downstream WPE:
https://github.com/WebPlatformForEmbedded
(Includes some set-top-box related bits, and ad hoc solutions for specific
target hardware in the context of RDK. Works as a playground for unstable
or testing features which do not have a room in upstream yet)

Collaboration is welcome!

WPE current status: repositories

jjsanchez@igalia.com | www.igalia.com

https://webkit.org/getting-the-code/
https://github.com/WebPlatformForEmbedded

Thanks!

jjsanchez@igalia.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

