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● Co-founder of Igalia in 2001. 60 engineers. Global

● Open source consultancy: browsers, multimedia, graphics
compilers, networking, ...

● Igalia among the top contributors to upstream web browsers
WebKit/JSC, Chromium/V8, Firefox/Servo/SpiderMonkey

● Working with the industry: tablets, phones, smart tv, set-top-
boxes, automotive and several other embedded devices
manufacturers 

Myself, Igalia and Web Browsers
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● Part I: Why WPE? Problem and proposed solution

● Part II: What exactly is WPE? Architecture and features

● Part III: Where is WPE going? Current status and future

Outline of the talk
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PART 1

Why WPE? 

Problem and proposed solution
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● Embedded devices are getting sophisticated

● Many have (or will have) GNU/Linux with a touch
screen and will run apps

● The web is powerful, flexible and a comfort zone for
many application developers

● Frequent use case: full-screen (kiosk mode web apps)

● Still low-end or mid-end hardware (limited resources,
optimizations needed)

The problem: HTML5 and embedded devices
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● Focus on lightweight

● No need to solve all the use cases and needs

● Open source options we can base it on:

● Firefox (Servo) / SpiderMonkey

● Chromium / Blink / V8

● WebKit / JSC

The solution: browser for embedded devices
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● Years ago Mozilla decided not to target other browser
developers 

● Several open source browsers moved away from Gecko to
WebKit about 10 years ago

● Firefox/Gecko has a quite monolithic architecture today

● Things might get better with Servo, but it is too soon

Firefox (Servo) / SpiderMonkey ?
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● Very powerful and feature complete

● Not a flexible architecture

● No stable API provided for derived browsers (fork needed)

● Some interesting solutions:

● Chromium Embedded Framework (CEF)

● QtWebEngine

● Not particularly optimized for low-end hardware, Wayland
support not ready in Linux yet, licensing issues,... 

Chromium / Blink / V8 ? 
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● Also powerful and complete (Safari for OSX and iOS)

● Very flexible architecture (ports)

● Ports provide a stable API and can be part of upstream

● Available ports not ideal for our use case:

● Upstream: iOS, OSX, GTK+

● Downstream: EFL, Qt, Sony,... 

● Solution: creating a WebKit port for embedded devices

WebKit, then ?
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PART 2

What is WPE? 

Architecture and features
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● Web rendering engine. The engine is the product
● Open source (and open development) since 2005
● Fexible architecture: 

 WebKit
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WebKit: thin layer to link against
 from the applications

WebCore: rendering, layout,
 network access, multimedia,
 accessibility support...

JS Engine: the JavaScript engine.
 JavaScriptCore by default.

Platform: platform-specific hooks to
 implement generic algorithms



  

WebKit ports: examples
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● Main use case: full-screen content

● Fast and lightweight, minimal set of dependencies

● Most HTML5 features need to be supported 

● WebGL

● Accelerated canvas

● Hardware accelerated CSS 3D transformations

● Hardware accelerated video playback

A new WebKit port: WPE – Key requirements
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● Derives from WebKitGTK+. Part of the codebase shared

● Toolkit and platform agnostic

● GStreamer for media. JSC as JavaScript engine
● Reduces the dependencies to a few common libraries: 

● Glib, FreeType, HarfBuzz, GnuTLS, pixman, cairo, libsoup

● GLES 2.0 for hardware accelerated rendering

● Multiprocess: UI, Web, Network and Storage in different processes

● Intensive threading in composition, image decoding, media playback

A new WebKit port: WPE – Architecture
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● Main goal: efficient cross-process GPU buffer sharing

● Wayland, libgbm and other native implementations

● Necessary to glue the backend facilities with the
provided EGL platform

● Renderer backend provides rendering target

● View backend provides a way to display the rendered
buffer on screen

● Vulkan support down the line

A new WebKit port: WPE – Backends
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● Libgbm: Intel, AMD, open-source NVidia drivers for embedded
devices (i.e. Jetson) -- specific to the Mesa library

● Wayland-egl: uses Wayland as the protocol internally, can be used
by Mesa as well as ARM Mali drivers

● LibWPEBackend-rdk: covers 4-5 different stacks (RPi, IntelCE, bcm-
nexus via the native API, bcm-nexus via Wayland, westeros - RDK-
oriented compositor)

● Working on an experimental libWPEBackend-android

A new WebKit port: WPE – Current backends
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● Reference hardware: Rpi 0-3 (desktop used for development too)

● A functional Raspberri Pi image can be about 40MB

● Low memory footprint: possible to define limits to consumption
<100MB for a standard configuration

●  Able to play YoutubeTV on a Rpi 0-1:

● Using textured video

● Raspberry Pi 0/1 is ~1000 DMIPS

A new WebKit port: WPE – Lightweight
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● Hardware accelerated decoding where GStreamer
plugins are available (Raspberry Pi and Broadcom
Nexus)

● Hardware accelerated video rendering using GLES
(allows CSS 3D transformations on the video)

● External rendering (hole punch) when required

WPE – strong focus on media (I)
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● Media Source Extensions (MSE) support 
● MP4 done, WebM in progress (VP8 and VP9)
● Youtube conformance 2016 passed, 2018 in progress

● Encrypted Media Extensions (EME) support
● 0.1b (V1) done, with ClearKey and PlayReady
● Proposed candidate (V3) under development:

● Object oriented and promise based 
● Clearkey (W3C compliance and testing purposes)
● PlayReady and Widevine (using OpenCDM)

● WebRTC support
● Prototype done with OpenWebRTC (limitations)
● Now adding libwebrtc in collaboration with Apple

WPE – strong focus on media (II)
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PART 3

Where is WPE going? 

Current status and future plans
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● Port started in 2014 as an experiment

● Heavily developed during 2015-2017

● Integrated in WebKit upstream since May 2017

● Stable Igalia team working on it

● Community growing

● Functionally it is quite complete today!

WPE current status: upstream

jjsanchez@igalia.com | www.igalia.com



  

● Media&entertainment industry:

 Initially sponsored by Metrological

 RDK consortium adopted the technology 

 Used by Comcast, Liberty Global and others

 >10M set-top-boxes with WPE. Number growing

● Since 2017: several new use cases, various kinds of
embedded devices adopting industrially WPE ==> More
hardware supported 

WPE current status: adoption
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● Stable release cycles:
● Every 6 months (sync with WebKitGTK+)
● They will be preview releases for now

● Improved QA infrastructure
● More tests, more architectures, more target

devices
● More documentation (project website)

WPE: ongoing and future efforts (I)
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● New graphics architecture 
● Further work on multimedia standards
● Networking & security
● Other Web Platform standards (WebDriver,

WebGL2, WebVR,...)
● JSC improvements on 32bits (MIPS, ARMv6,

ARMv7)
● Android prototype

WPE: ongoing and future efforts (II)
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● Upstream WPE:
https://webkit.org/getting-the-code/

● Downstream WPE:
https://github.com/WebPlatformForEmbedded
(Includes some set-top-box related bits, and ad hoc solutions for specific
target hardware in the context of RDK.  Works as a playground for unstable
or testing features which do not have a room in upstream yet)

Collaboration is welcome!

WPE current status: repositories
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https://webkit.org/getting-the-code/
https://github.com/WebPlatformForEmbedded


  

Thanks!
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