Linux Kernel Testing:
Where Are We ?

Guenter Roeck, Google

mailto:linux@roeck-us.net
mailto:linux@roeck-us.net

Test Suites
Testbeds
Summary
Next steps

Test Suites

Test Suites

e Linux Test Project (LTP)

e Module tests in tools/testing

o kselftest
o nvdimm
(@)

e Static code analyzers
e Fuzzingtools

e Subsystem tests
o e.g.xfstests

Linux Test Project (LTP)

e Collection of tools for testing the Linux kernel and related features
e Started by SGI
e Maintained by IBM, Cisco, Fujitsu, SUSE, Red Hat and others

LTP - Continued

e (Coverage
o 1000+ system calls
o 1000+ POSIX conformance tests
o 400+ 10 stress tests
o Realtime, networking, cgroups, namespace tests

e Links
o https://linux-test-project.github.io/
o https://github.com/linux-test-project/Itp/wiki

Kernel self-test

Unit test framework in Linux kernel
Driven by Shuah Khan

Part of Linux kernel source

Links

o tools/testing/selftests/
o https://kselftest.wiki.kernel.org/
o https://lwn.net/Articles/608959/

https://kselftest.wiki.kernel.org/
https://kselftest.wiki.kernel.org/
https://lwn.net/Articles/608959/
https://lwn.net/Articles/608959/

Fuzzing Tools

o Trinity
o Maintained by Dave Jones
o AlLinux System call fuzz tester
o http://codemonkey.org.uk/projects/trinity/
o https://qgithub.com/kernelslacker/trinity
e Syzcaller
o Developed and maintained by the Google syzcaller team
o Unsupervised, coverage-guided Linux syscall fuzzer
o Meant to be used with KASAN
o https://qgithub.com/google/syzkaller

http://codemonkey.org.uk/projects/trinity/
http://codemonkey.org.uk/projects/trinity/
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://github.com/google/syzkaller
https://github.com/google/syzkaller

Static Code Analyzers

e Coccinelle
o Developed and maintained by Julia Lawall
o A program matching and transformation engine
o http://coccinelle.lip6.fr/
e Coverity
o Commercial Static Analyzer
o Linux kernel tested for free
o Detailed test results and statistics available

http://coccinelle.lip6.fr/
http://coccinelle.lip6.fr/

Static Code Analyzers - Continued

e gcc warnings
e smatch

o “The Source Matcher”

o https://blogs.oracle.com/linuxkernel/entry/smatch_static_analysis_tool_overview
e sparse

o A Semantic Parser for C

o https://sparse.wiki.kernel.org/index.php/Main_Page

https://blogs.oracle.com/linuxkernel/entry/smatch_static_analysis_tool_overview
https://blogs.oracle.com/linuxkernel/entry/smatch_static_analysis_tool_overview
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page

Automated Testing

Automated Testing

e Autobuilders

o kisskb

o 0Day

o kernelci.org

o Kerneltests.org
o Other

m Olof's autobuilder, autobooter
m Tegra builds
m Buildbot for Mark Brown
e Static Analysis
o Coverity

Kisskb

e Set up and maintained by Michael
Ellerman

e The ‘original’ automated kernel build
system

e Online (at least) since 2007

e (Coverage
o Most architectures (29)
o Mainline, next, stable
o Build only, no boot/runtime tests

Kisskb - Continued

e Used to generate weekly “Build regressions/improvements...” reports
e Build results available per e-mail on request

e Links
o http://kisskb.ellerman.id.au/kisskb/matrix

ODay: Overview

e Fengguang Wu'’s brain child
e COperational since 2013

e Finds and reports
o Build failures
o Boot failures
o Functional bugs
o Performance regressions and improvements

e By far the most comprehensive test bed

ODay: How does it work ?

pull

Devs “ patches S :
uild tests/ » Boot > Function »
> code analysis Tests Tests

A
@ Bisect

Performance S I
Power Tests PASS!

SAME DAY to Isolate
turn around Defective .) -
- : . CGdE “- “,—"‘ A' ‘;,-"
reate ha® e | I 1 !
ol e, | FAILL FAILL FAILY FAIL!

Report

ODay: Infrastructure

e ~80 servers

o 18 build servers
o Other servers used for runtime tests

e ~8engineers

ODay: Coverage

e 683 Trees

o Mainline, stable, stable-rc, next
o Developer trees

e Detects ~1,200 daily branch changes

e Supports almost all kernel architectures
o Exceptions: metag, arc, hexagon, unicore32

e Up to 2,000 test cases

ODay: Statistics

36,000 builds per day
150,000 runtime tests per day
o ~8000 functional / performance / power tests
o Remaining tests are boot/trinity tests in gemu
~800 build errors reported per month
~60 gemu boot failures reported per month
60% of failures reported within 2 hours
90% of failures reported within 24 hours
Boot tests may require up to 1 week to complete
Performance tests may require up to 1 month to complete

ODay: Challenges (from Fengguang)

e Ul needs to be improved

e Runtime tests are noisy
o Reporting delays (long runtime, system load)
o Difficult to reproduce
o Difficult to interpret
e High maintenance burden
o Bugs, noisiness
o Keeps the entire team busy

ODay: Links

e https://01.org/lkp
e https://git.kernel.org/cgit/linux/kernel/qgit/wfg/lkp-tests.qit
e https://lists.01.org/pipermail/kbuild-all

https://01.org/lkp
https://01.org/lkp
https://git.kernel.org/cgit/linux/kernel/git/wfg/lkp-tests.git
https://git.kernel.org/cgit/linux/kernel/git/wfg/lkp-tests.git
https://lists.01.org/pipermail/kbuild-all
https://lists.01.org/pipermail/kbuild-all

Kernelci: Overview

Maintained by Kevin Hillman
Operational since May 2014

Goals
o Wide range of Hardware
o Quickly find regressions
o Distributed

m 9 board farms, with more
coming
o Framework independent
m Most farms use Linaro LAVA

Kernelci: Coverage

Mainline, next, arm-soc

Stable, stable release candidates
Various maintainer trees

Arm, armé64, x86, mips

All upstream default configurations, plus variants
o 260+ configurations

Build and boot; no runtime tests, no bisect (yet)
Summary reports for stable release candidates

Kernelci: Statistics

9 Build farms

31 unique SoCs (arm, armé64, x86, MIPS)
260+ Configurations

200+ Unique boards

1000+ Builds per day

2300+ boots per day

Kernelci: Links

e https://kernelci.org/
e https://lists.linaro.org/pipermail/kernel-build-reports/
e #kernelci on IRC, Freenode

https://kernelci.org/
https://kernelci.org/
https://lists.linaro.org/pipermail/kernel-build-reports/
https://lists.linaro.org/pipermail/kernel-build-reports/

Kerneltests: Overview

e Created to test stable release

candidates
e Operational since 2013
e Goals

o Build all architectures

m Reasonable snapshot of default

configurations
o Boot all available gemu emulations
o Basic runtime tests (to be added ...

e Runs on five PCs with i7 class
CPUs

Kerneltests: Coverage

e Branches
O stable-rc, mainline, next, hwmon, watchdog

e Builds

o All architectures and variants
o Up to 149 defconfigs

e Boot tests (gemu)
o 14 architectures (+variants)
o Upto 113 platforms

e Summary reports for stable release candidates
e No runtime tests, no bisect, no individual reports

Kerneltests: Statistics

e Builds

o 15branches
o Up to 149 builds per branch
o 39 architectures and architecture variants
e (Qemu tests
o 14 architectures, 8 variants (little/big endian, 32/64 bit)
o Upto 113 platform boots per branch

e Average 300-400 builds, 200-300 boots per day

Kerneltests: Challenges

Ul

Buildbot stability

No long-term storage of test results
Automated reports

Automated bisect

Maintenance
o Toolchains
o Qemu

Operational cost

Kerneltests: Links

e http://kerneltests.org/builders
e https://qgithub.com/groeck/linux-build-test
e https://github.com/groeck/gemu

http://kerneltests.org/builders
http://kerneltests.org/builders
https://github.com/groeck/linux-build-test
https://github.com/groeck/linux-build-test
https://github.com/groeck/qemu
https://github.com/groeck/qemu

Other Build and Test Systems

e Mark Brown'’s Buildbot
o x86_64, arm, arm64 (8 builds)
e Olof's Autobuilder

o mainline and next for arm, arm64, powerpc
o ~120 configurations

e Olof’s Autobooter
o mainline, next, arm-soc
o ~75boards (arm)

e Tegra Builds

o Various Tegra builds and boots on mainline

Results reported at https://lists.linaro.org/pipermail/kernel-build-reports/

https://lists.linaro.org/pipermail/kernel-build-reports/

Coverity

Detailed static analysis on Linux kernel

Detailed defect reports and statistics

Kernel contributors get free account to see results
https://scan.coverity.com/projects/linux

https://scan.coverity.com/projects/linux
https://scan.coverity.com/projects/linux

Coverity: Sample report

*** CID 1374326: Incorrect expression (NO_EFFECT)
/tools/objtool/arch/x86/decode.c: 102 in arch_decode_instruction()

96 insn.modrm.nbytes && insn.modrm.bytes[0] == 0xe5)
97 /* mov rsp, rbp */

98 *type = INSN_FP_SETUP;

99 break;

100

101 case 0x8d:

CID 1374326: Incorrect expression (NO_EFFECT)
Comparing an array to null is not useful: "insn.rex_prefix.bytes", since the test will always evaluate as true.

102 if (insn.rex_prefix.bytes && /* Should probably be insn.rex_prefix.nbytes */
103 insn.rex_prefix.bytes[0] == 0x48 &&

104 insn.modrm.nbytes && insn.modrm.bytes[0] == 0x2c &&

105 insn.sib.nbytes && insn.sib.bytes[0] == 0x24)

106 /* lea %(rsp), %rbp */

107 *type = INSN_FP_SETUP

Coverity: Statistics

COVERITY ==

Back todasniboand

Linux

m |T:i:".'l 'J?I‘..f'l;-. biemben Itz mu Shl'lﬂl.lui

Analysis Metrics

Versoe 4EQ
Be In the Spotlight!

oct 16,2016 | 11,515,875 “ Er eyl
y Suas Fiorr Cpaerity St O

Source Progecis

Defect changes since previous build dated Oct 03, 2016 m

Your Testimandal about
Coverity

Let 1 krerw hoay Conerity Scan

Defect h’ tetiss for cumant bulld by heiped arprove your projects

See how defect density for "Linux’ compares with defect density for other open source projects, ©
\Larn emcsng

Drivers-wireless
Drivers-Media
Drivers

Crypto
Networking
Drivers-GPU

Other |

Tools
Drivers-5CSI
FS
Drivers-MD
KWVM

Drivers-Net |

Drivers-5taging
SCSI-gla2xxx
Sound

Arch-xB6

Block
Drivers-Infiniband
Kernel
Staging-lustre
Drivers-Ethernet
FS-BTRFS
Drivers-USB
Drivers-ISDN
FS-CIFS
Drivers-Misc
GPU-Radeon
Net-ipv4
GPU-i915
Ethernet-QLogic
Lib
Drivers-Input
Drivers-Framebuffer

Coverity: Top Defects per Component

Outstanding Defect per Component

Coverity: Outstanding Defects

Outstanding vs Fixed defects over period of time

12,000
9,000
—8— Fixed
6,000 defects
—8— Quftstan...
3,000
0

Jul 2013 Jan 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016 Jul 2016

Coverity: Defect Density

Defect Density over period of time

0.8
—8— Defect
e Density of
.._W‘-.—.—.-.—-.——..—.—.—-*_._—-._H_.._.__H_. Linux
0.4 — Avg.
Defect
Density of
0.2 0ss
0.0

Jan 2015 Apr 2015 Jul 2015 Oct 2015 Jan 2016 Apr 2016 Jul 2016 Oct 2016

The graph compares the defect density of the project with the average defect density
of open source projects that are similar in size (i.e. more than 1 million lines of code)

Summary

Good

Test coverage has improved significantly over the last 2-3 years
Test coverage still continuously improving

The number of kernel bugs (per LOC) follows a downward trend
People start paying attention to kernel bug reports

Not so Good

e Kernel stability still perceived as insufficient
o Especially for stable releases
o Need to further improve test coverage and quality of test reports

e Total number of open defects increases over time
o Follows kernel code size increase
o Need to analyze and fix outstanding bugs

e Sometimes it takes a long time for known bugs to get fixed
e No clear guideline how to handle false positives (especially from gcc)
e Not enough people actively engaged in ‘generic’ bug analysis and fixing

Next Steps

e Spread the word
o Available test suites
o Testbeds

o Test coverage

e Improve test coverage
o Especially but not only for stable releases

e Figure out how to better handle known positives

Actually fix known bugs

o Bugreports from autobuilders / autobooters
o Bugreports from static analyzers

Next steps - continued

e Identify and track available test suites

e Improve test coverage
o More functional tests (both in gemu and on real hardware)
o Automatic bisect
o Module tests
m Implement and run
o More testing on real hardware

e Improve test feedback

o Automatic reports
o Unified reporting
o Ul to pull test results

Thank You

