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Test Suites



Test Suites

e Linux Test Project (LTP)

e Module tests in tools/testing

o kselftest
o nvdimm
(@)

e Static code analyzers
e Fuzzingtools

e Subsystem tests
o e.g.xfstests



Linux Test Project (LTP)

e Collection of tools for testing the Linux kernel and related features
e Started by SGI
e Maintained by IBM, Cisco, Fujitsu, SUSE, Red Hat and others



LTP - Continued

e (Coverage
o 1000+ system calls
o 1000+ POSIX conformance tests
o 400+ 10 stress tests
o Realtime, networking, cgroups, namespace tests

e Links
o https://linux-test-project.github.io/
o https://github.com/linux-test-project/Itp/wiki



Kernel self-test

Unit test framework in Linux kernel
Driven by Shuah Khan

Part of Linux kernel source

Links

o tools/testing/selftests/
o https://kselftest.wiki.kernel.org/
o https://lwn.net/Articles/608959/
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Fuzzing Tools

o Trinity
o Maintained by Dave Jones
o  AlLinux System call fuzz tester
o http://codemonkey.org.uk/projects/trinity/
o https://qgithub.com/kernelslacker/trinity
e Syzcaller
o Developed and maintained by the Google syzcaller team
o Unsupervised, coverage-guided Linux syscall fuzzer
o Meant to be used with KASAN
o https://qgithub.com/google/syzkaller
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Static Code Analyzers

e Coccinelle
o Developed and maintained by Julia Lawall
o A program matching and transformation engine
o http://coccinelle.lip6.fr/
e Coverity
o Commercial Static Analyzer
o Linux kernel tested for free
o Detailed test results and statistics available
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Static Code Analyzers - Continued

e gcc warnings
e smatch

o “The Source Matcher”

o https://blogs.oracle.com/linuxkernel/entry/smatch_static_analysis_tool_overview
e sparse

o A Semantic Parser for C

o https://sparse.wiki.kernel.org/index.php/Main_Page
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Automated Testing



Automated Testing

e Autobuilders

o kisskb

o 0Day

o kernelci.org

o Kerneltests.org
o  Other

m Olof's autobuilder, autobooter
m Tegra builds
m Buildbot for Mark Brown
e Static Analysis
o Coverity



Kisskb

e Set up and maintained by Michael
Ellerman

e The ‘original’ automated kernel build
system

e Online (at least) since 2007

e (Coverage
o Most architectures (29)
o Mainline, next, stable
o  Build only, no boot/runtime tests




Kisskb - Continued

e Used to generate weekly “Build regressions/improvements...” reports
e Build results available per e-mail on request

e Links
o http://kisskb.ellerman.id.au/kisskb/matrix



ODay: Overview

e Fengguang Wu'’s brain child
e COperational since 2013

e Finds and reports
o  Build failures
o Boot failures
o  Functional bugs
o Performance regressions and improvements

e By far the most comprehensive test bed



ODay: How does it work ?
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ODay: Infrastructure

e ~80 servers

o 18 build servers
o  Other servers used for runtime tests

e ~8engineers



ODay: Coverage

e 683 Trees

o Mainline, stable, stable-rc, next
o Developer trees

e Detects ~1,200 daily branch changes

e Supports almost all kernel architectures
o Exceptions: metag, arc, hexagon, unicore32

e Up to 2,000 test cases



ODay: Statistics

36,000 builds per day
150,000 runtime tests per day
o ~8000 functional / performance / power tests
o Remaining tests are boot/trinity tests in gemu
~800 build errors reported per month
~60 gemu boot failures reported per month
60% of failures reported within 2 hours
90% of failures reported within 24 hours
Boot tests may require up to 1 week to complete
Performance tests may require up to 1 month to complete



ODay: Challenges (from Fengguang)

e Ul needs to be improved

e Runtime tests are noisy
o Reporting delays (long runtime, system load)
o Difficult to reproduce
o Difficult to interpret
e High maintenance burden
o Bugs, noisiness
o Keeps the entire team busy



ODay: Links

e https://01.org/lkp
e https://git.kernel.org/cgit/linux/kernel/qgit/wfg/lkp-tests.qit
e https://lists.01.org/pipermail/kbuild-all
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Kernelci: Overview

Maintained by Kevin Hillman
Operational since May 2014

Goals
o  Wide range of Hardware
o Quickly find regressions
o Distributed

m 9 board farms, with more
coming
o Framework independent
m Most farms use Linaro LAVA




Kernelci: Coverage

Mainline, next, arm-soc

Stable, stable release candidates
Various maintainer trees

Arm, armé64, x86, mips

All upstream default configurations, plus variants
o 260+ configurations

Build and boot; no runtime tests, no bisect (yet)
Summary reports for stable release candidates



Kernelci: Statistics

9 Build farms

31 unique SoCs (arm, armé64, x86, MIPS)
260+ Configurations

200+ Unique boards

1000+ Builds per day

2300+ boots per day



Kernelci: Links

e https://kernelci.org/
e https://lists.linaro.org/pipermail/kernel-build-reports/
e #kernelci on IRC, Freenode
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Kerneltests: Overview

e Created to test stable release

candidates
e Operational since 2013
e Goals

o Build all architectures

m Reasonable snapshot of default

configurations
o Boot all available gemu emulations
o  Basic runtime tests (to be added ...

e Runs on five PCs with i7 class
CPUs




Kerneltests: Coverage

e Branches
O  stable-rc, mainline, next, hwmon, watchdog

e Builds

o All architectures and variants
o Up to 149 defconfigs

e Boot tests (gemu)
o 14 architectures (+variants)
o Upto 113 platforms

e Summary reports for stable release candidates
e No runtime tests, no bisect, no individual reports



Kerneltests: Statistics

e Builds

o 15branches
o Up to 149 builds per branch
o 39 architectures and architecture variants
e (Qemu tests
o 14 architectures, 8 variants (little/big endian, 32/64 bit)
o Upto 113 platform boots per branch

e Average 300-400 builds, 200-300 boots per day



Kerneltests: Challenges

Ul

Buildbot stability

No long-term storage of test results
Automated reports

Automated bisect

Maintenance
o Toolchains
o Qemu

Operational cost



Kerneltests: Links

e http://kerneltests.org/builders
e https://qgithub.com/groeck/linux-build-test
e https://github.com/groeck/gemu
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Other Build and Test Systems

e Mark Brown'’s Buildbot
o x86_64, arm, arm64 (8 builds)
e Olof's Autobuilder

o mainline and next for arm, arm64, powerpc
o ~120 configurations

e Olof’s Autobooter
o mainline, next, arm-soc
o ~75boards (arm)

e Tegra Builds

o Various Tegra builds and boots on mainline

Results reported at https://lists.linaro.org/pipermail/kernel-build-reports/
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Coverity

Detailed static analysis on Linux kernel

Detailed defect reports and statistics

Kernel contributors get free account to see results
https://scan.coverity.com/projects/linux
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Coverity: Sample report

*** CID 1374326: Incorrect expression (NO_EFFECT)
/tools/objtool/arch/x86/decode.c: 102 in arch_decode_instruction()

96 insn.modrm.nbytes && insn.modrm.bytes[0] == 0xe5)
97 /* mov rsp, rbp */

98 *type = INSN_FP_SETUP;

99 break;

100

101 case 0x8d:

CID 1374326: Incorrect expression (NO_EFFECT)
Comparing an array to null is not useful: "insn.rex_prefix.bytes", since the test will always evaluate as true.

102 if (insn.rex_prefix.bytes && /* Should probably be insn.rex_prefix.nbytes */
103 insn.rex_prefix.bytes[0] == 0x48 &&

104 insn.modrm.nbytes && insn.modrm.bytes[0] == 0x2c &&

105 insn.sib.nbytes && insn.sib.bytes[0] == 0x24)

106 /* lea %(rsp), %rbp */

107 *type = INSN_FP_SETUP



Coverity: Statistics
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Coverity: Outstanding Defects

Outstanding vs Fixed defects over period of time
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Coverity: Defect Density

Defect Density over period of time
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The graph compares the defect density of the project with the average defect density
of open source projects that are similar in size (i.e. more than 1 million lines of code )



Summary



Good

Test coverage has improved significantly over the last 2-3 years
Test coverage still continuously improving

The number of kernel bugs (per LOC) follows a downward trend
People start paying attention to kernel bug reports



Not so Good

e Kernel stability still perceived as insufficient
o Especially for stable releases
o Need to further improve test coverage and quality of test reports

e Total number of open defects increases over time
o Follows kernel code size increase
o Need to analyze and fix outstanding bugs

e Sometimes it takes a long time for known bugs to get fixed
e No clear guideline how to handle false positives (especially from gcc)
e Not enough people actively engaged in ‘generic’ bug analysis and fixing



Next Steps

e Spread the word
o Available test suites
o Testbeds

o Test coverage

e Improve test coverage
o Especially but not only for stable releases

e Figure out how to better handle known positives

Actually fix known bugs

o Bugreports from autobuilders / autobooters
o Bugreports from static analyzers



Next steps - continued

e Identify and track available test suites

e Improve test coverage
o  More functional tests (both in gemu and on real hardware)
o Automatic bisect
o Module tests
m Implement and run
o More testing on real hardware

e Improve test feedback

o Automatic reports
o  Unified reporting
o Ul to pull test results
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