
Linux Kernel Testing:
Where Are We ?
Guenter Roeck, Google
linux@roeck-us.net

mailto:linux@roeck-us.net
mailto:linux@roeck-us.net

Agenda

● Test Suites
● Testbeds
● Summary
● Next steps

Test Suites

Test Suites

● Linux Test Project (LTP)
● Module tests in tools/testing

○ kselftest
○ nvdimm
○ ...

● Static code analyzers
● Fuzzing tools
● Subsystem tests

○ e.g. xfstests

Linux Test Project (LTP)

● Collection of tools for testing the Linux kernel and related features
● Started by SGI
● Maintained by IBM, Cisco, Fujitsu, SUSE, Red Hat and others

LTP - Continued

● Coverage
○ 1000+ system calls
○ 1000+ POSIX conformance tests
○ 400+ IO stress tests
○ Realtime, networking, cgroups, namespace tests

● Links
○ https://linux-test-project.github.io/
○ https://github.com/linux-test-project/ltp/wiki

Kernel self-test

● Unit test framework in Linux kernel
● Driven by Shuah Khan
● Part of Linux kernel source
● Links

○ tools/testing/selftests/
○ https://kselftest.wiki.kernel.org/
○ https://lwn.net/Articles/608959/

https://kselftest.wiki.kernel.org/
https://kselftest.wiki.kernel.org/
https://lwn.net/Articles/608959/
https://lwn.net/Articles/608959/

Fuzzing Tools

● Trinity
○ Maintained by Dave Jones
○ A Linux System call fuzz tester
○ http://codemonkey.org.uk/projects/trinity/
○ https://github.com/kernelslacker/trinity

● Syzcaller
○ Developed and maintained by the Google syzcaller team
○ Unsupervised, coverage-guided Linux syscall fuzzer
○ Meant to be used with KASAN
○ https://github.com/google/syzkaller

http://codemonkey.org.uk/projects/trinity/
http://codemonkey.org.uk/projects/trinity/
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://github.com/google/syzkaller
https://github.com/google/syzkaller

Static Code Analyzers

● Coccinelle
○ Developed and maintained by Julia Lawall
○ A program matching and transformation engine
○ http://coccinelle.lip6.fr/

● Coverity
○ Commercial Static Analyzer
○ Linux kernel tested for free
○ Detailed test results and statistics available

http://coccinelle.lip6.fr/
http://coccinelle.lip6.fr/

Static Code Analyzers - Continued

● gcc warnings
● smatch

○ “The Source Matcher”
○ https://blogs.oracle.com/linuxkernel/entry/smatch_static_analysis_tool_overview

● sparse
○ A Semantic Parser for C
○ https://sparse.wiki.kernel.org/index.php/Main_Page

https://blogs.oracle.com/linuxkernel/entry/smatch_static_analysis_tool_overview
https://blogs.oracle.com/linuxkernel/entry/smatch_static_analysis_tool_overview
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page

Automated Testing

Automated Testing

● Autobuilders
○ kisskb
○ 0Day
○ kernelci.org
○ Kerneltests.org
○ Other

■ Olof’s autobuilder, autobooter
■ Tegra builds
■ Buildbot for Mark Brown

● Static Analysis
○ Coverity

Kisskb

● Set up and maintained by Michael
Ellerman

● The ‘original’ automated kernel build
system

● Online (at least) since 2007
● Coverage

○ Most architectures (29)
○ Mainline, next, stable
○ Build only, no boot/runtime tests

Kisskb - Continued

● Used to generate weekly “Build regressions/improvements…” reports
● Build results available per e-mail on request
● Links

○ http://kisskb.ellerman.id.au/kisskb/matrix

0Day: Overview

● Fengguang Wu’s brain child
● Operational since 2013
● Finds and reports

○ Build failures
○ Boot failures
○ Functional bugs
○ Performance regressions and improvements

● By far the most comprehensive test bed

0Day: How does it work ?

0Day: Infrastructure

● ~80 servers
○ 18 build servers
○ Other servers used for runtime tests

● ~8 engineers

0Day: Coverage

● 683 Trees
○ Mainline, stable, stable-rc, next
○ Developer trees

● Detects ~1,200 daily branch changes
● Supports almost all kernel architectures

○ Exceptions: metag, arc, hexagon, unicore32

● Up to 2,000 test cases

0Day: Statistics

● 36,000 builds per day
● 150,000 runtime tests per day

○ ~8000 functional / performance / power tests
○ Remaining tests are boot/trinity tests in qemu

● ~800 build errors reported per month
● ~60 qemu boot failures reported per month
● 60% of failures reported within 2 hours
● 90% of failures reported within 24 hours
● Boot tests may require up to 1 week to complete
● Performance tests may require up to 1 month to complete

0Day: Challenges (from Fengguang)

● UI needs to be improved
● Runtime tests are noisy

○ Reporting delays (long runtime, system load)
○ Difficult to reproduce
○ Difficult to interpret

● High maintenance burden
○ Bugs, noisiness
○ Keeps the entire team busy

0Day: Links

● https://01.org/lkp
● https://git.kernel.org/cgit/linux/kernel/git/wfg/lkp-tests.git
● https://lists.01.org/pipermail/kbuild-all

https://01.org/lkp
https://01.org/lkp
https://git.kernel.org/cgit/linux/kernel/git/wfg/lkp-tests.git
https://git.kernel.org/cgit/linux/kernel/git/wfg/lkp-tests.git
https://lists.01.org/pipermail/kbuild-all
https://lists.01.org/pipermail/kbuild-all

Kernelci: Overview

● Maintained by Kevin Hillman
● Operational since May 2014
● Goals

○ Wide range of Hardware
○ Quickly find regressions
○ Distributed

■ 9 board farms, with more
coming

○ Framework independent
■ Most farms use Linaro LAVA

Kernelci: Coverage

● Mainline, next, arm-soc
● Stable, stable release candidates
● Various maintainer trees
● Arm, arm64, x86, mips
● All upstream default configurations, plus variants

○ 260+ configurations

● Build and boot; no runtime tests, no bisect (yet)
● Summary reports for stable release candidates

Kernelci: Statistics

● 9 Build farms
● 31 unique SoCs (arm, arm64, x86, MIPS)
● 260+ Configurations
● 200+ Unique boards
● 1000+ Builds per day
● 2300+ boots per day

Kernelci: Links

● https://kernelci.org/
● https://lists.linaro.org/pipermail/kernel-build-reports/
● #kernelci on IRC, Freenode

https://kernelci.org/
https://kernelci.org/
https://lists.linaro.org/pipermail/kernel-build-reports/
https://lists.linaro.org/pipermail/kernel-build-reports/

Kerneltests: Overview

● Created to test stable release
candidates

● Operational since 2013
● Goals

○ Build all architectures

■ Reasonable snapshot of default
configurations

○ Boot all available qemu emulations
○ Basic runtime tests (to be added …)

● Runs on five PCs with i7 class
CPUs

Kerneltests: Coverage

● Branches
○ stable-rc, mainline, next, hwmon, watchdog

● Builds
○ All architectures and variants
○ Up to 149 defconfigs

● Boot tests (qemu)
○ 14 architectures (+variants)
○ Up to 113 platforms

● Summary reports for stable release candidates
● No runtime tests, no bisect, no individual reports

Kerneltests: Statistics

● Builds
○ 15 branches
○ Up to 149 builds per branch
○ 39 architectures and architecture variants

● Qemu tests
○ 14 architectures, 8 variants (little/big endian, 32/64 bit)
○ Up to 113 platform boots per branch

● Average 300-400 builds, 200-300 boots per day

Kerneltests: Challenges

● UI
● Buildbot stability
● No long-term storage of test results
● Automated reports
● Automated bisect
● Maintenance

○ Toolchains
○ Qemu

● Operational cost

Kerneltests: Links

● http://kerneltests.org/builders
● https://github.com/groeck/linux-build-test
● https://github.com/groeck/qemu

http://kerneltests.org/builders
http://kerneltests.org/builders
https://github.com/groeck/linux-build-test
https://github.com/groeck/linux-build-test
https://github.com/groeck/qemu
https://github.com/groeck/qemu

Other Build and Test Systems

● Mark Brown’s Buildbot
○ x86_64, arm, arm64 (8 builds)

● Olof's Autobuilder
○ mainline and next for arm, arm64, powerpc
○ ~120 configurations

● Olof’s Autobooter
○ mainline, next, arm-soc
○ ~75 boards (arm)

● Tegra Builds
○ Various Tegra builds and boots on mainline

Results reported at https://lists.linaro.org/pipermail/kernel-build-reports/

https://lists.linaro.org/pipermail/kernel-build-reports/

Coverity

● Detailed static analysis on Linux kernel
● Detailed defect reports and statistics
● Kernel contributors get free account to see results
● https://scan.coverity.com/projects/linux

https://scan.coverity.com/projects/linux
https://scan.coverity.com/projects/linux

Coverity: Sample report

*** CID 1374326: Incorrect expression (NO_EFFECT)
/tools/objtool/arch/x86/decode.c: 102 in arch_decode_instruction()
96 insn.modrm.nbytes && insn.modrm.bytes[0] == 0xe5)
97 /* mov rsp, rbp */
98 *type = INSN_FP_SETUP;
99 break;
100
101 case 0x8d:

 CID 1374326: Incorrect expression (NO_EFFECT)
 Comparing an array to null is not useful: "insn.rex_prefix.bytes", since the test will always evaluate as true.

102 if (insn.rex_prefix.bytes && /* Should probably be insn.rex_prefix.nbytes */
103 insn.rex_prefix.bytes[0] == 0x48 &&
104 insn.modrm.nbytes && insn.modrm.bytes[0] == 0x2c &&
105 insn.sib.nbytes && insn.sib.bytes[0] == 0x24)
106 /* lea %(rsp), %rbp */
107 *type = INSN_FP_SETUP

Coverity: Statistics

Coverity: Top Defects per Component

Coverity: Outstanding Defects

Coverity: Defect Density

Summary

Good

● Test coverage has improved significantly over the last 2-3 years
● Test coverage still continuously improving
● The number of kernel bugs (per LOC) follows a downward trend
● People start paying attention to kernel bug reports

Not so Good

● Kernel stability still perceived as insufficient
○ Especially for stable releases
○ Need to further improve test coverage and quality of test reports

● Total number of open defects increases over time
○ Follows kernel code size increase
○ Need to analyze and fix outstanding bugs

● Sometimes it takes a long time for known bugs to get fixed
● No clear guideline how to handle false positives (especially from gcc)
● Not enough people actively engaged in ‘generic’ bug analysis and fixing

Next Steps

● Spread the word
○ Available test suites
○ Testbeds
○ Test coverage

● Improve test coverage
○ Especially but not only for stable releases

● Figure out how to better handle known positives
● Actually fix known bugs

○ Bug reports from autobuilders / autobooters
○ Bug reports from static analyzers

Next steps - continued

● Identify and track available test suites
● Improve test coverage

○ More functional tests (both in qemu and on real hardware)
○ Automatic bisect
○ Module tests

■ Implement and run
○ More testing on real hardware

● Improve test feedback
○ Automatic reports
○ Unified reporting
○ UI to pull test results

Thank You

