
 Tracing resource-constrained embedded
systems using eBPF

Adrian Ratiu, Collabora Ltd

Agenda
 About me

 Embedded / IoT woes

 How does eBPF fit in?

 Quick eBPF / BCC introduction, benefits

 Approaches to eBPF on embedded devices

 Trade-offs, specific projects pros/cons

 Ways forwards

About me.

I enjoy

working in a company of awesome FOSS-oriented
people at Collabora

work with companies who “get it” when using FOSS

work to help companies “get it” and be successful

I also really enjoy

Taking systems apart and modifying them

Projects like OpenEmbedded/Yocto, Buildroot/OpenWRT

Always looking for new tech to improve development

and debugging of embedded devices

Learning about eBPF (just a user, not an expert)

A strong dislike of locked-down devices /

 that lock owner usage without very good reasons

Embedded and the IoT
• “Smart” devices everywhere

• Increasingly powerful, complex, connected hardware

• Much more capable than default software installations allow

• Software complexity is also rising

• Obvious privacy, security and vendor lock-in concerns

(embedded systems now programmed in JavaScript)

Embedded problems

Devices have more power and run modern software

yet they are really hard to

develop, debug, maintain and extend

Embedded problems

Why?

Embedded problems

Why?
Increased SW/HW complexity

+
Embedded-specific resource constraints

Resource constraints
• Enough memory to run just a specific pre-built workload
• Cross-compiling and flashing/provisioning
• Special “Embedded Linux” distributions
• RT deadline requirements
• Ergonomics trade-offs, lack of HW ports
• Licensing requirements (no GPLv3...)
• Weird HW combinations, countless HW revisions
• Throw-away HW, planned obsolescence
• Low quality Out-Of-Tree drivers
• <Add your own pet-peeve here>

Busybox

Creative solutions against constraints
• Debug symbol servers and remote GDB sessions
• Booting rootfs over the network
• Special protocols for diagnostics/log/trace
• Debug vs Release images, “developer mode”
• And so on

Creative solutions against constraints

Here comes eBPF

• Debug symbol servers and remote GDB sessions
• Booting rootfs over the network
• Special protocols for diagnostics/log/trace
• Debug vs Release images, “developer mode”
• And so on

Wait a minute
Embedded-eBPF sounds like a solution in

search of a problem...

Wait a minute
Embedded-eBPF sounds like a solution in

search of a problem...

It kind of is.
“Embedded” engineers drooling over tools of “Cloud” engineers

Would like to have same system observability powers

Precedent: SMP on embedded

Explaining eBPF / BCC in a few slides!

BCC automates

 VM bytecode
 Kernel Userspace

Links at the end for better learning resources.

VM running bytecode in the Linux kernel

Bytecode loaded from userspace via bpf() syscall

Bytecode compiled to native machine code

Native code inserted in execution paths

Native code runs and collects data

Data shared with userspace

Verified for safety, unsafe => syscall rejects bytecode

Event-driven programming

User process

eBPF Bytecode verifier

sys_bpf() load

JiT compiler
Bytecode -> native code

User processUser process

Validation
succesful

sys_open handler

Attach/insert code
at instruction

sys_open()

0: 79 12 60 00 00 00 00 00 r2 = *(u64 *)(r1 + 96)
1: 7b 2a 98 ff 00 00 00 00 *(u64 *)(r10 - 104) = r2
2: 79 17 70 00 00 00 00 00 r7 = *(u64 *)(r1 + 112)
3: 85 00 00 00 0e 00 00 00 call 14
4: bf 06 00 00 00 00 00 00 r6 = r0
5: b7 09 00 00 00 00 00 00 r9 = 0
6: 7b 9a c0 ff 00 00 00 00 *(u64 *)(r10 - 64) = r9
7: bf 73 00 00 00 00 00 00 r3 = r7
8: 07 03 00 00 18 00 00 00 r3 += 24
9: bf a1 00 00 00 00 00 00 r1 = r10
11: 07 01 00 00 c0 ff ff ff r1 += -64
12: b7 02 00 00 08 00 00 00 r2 = 8
13: 85 00 00 00 04 00 00 00 call 4

How does userspace
produce that bytecode?

0: 79 12 60 00 00 00 00 00 r2 = *(u64 *)(r1 + 96)
1: 7b 2a 98 ff 00 00 00 00 *(u64 *)(r10 - 104) = r2
2: 79 17 70 00 00 00 00 00 r7 = *(u64 *)(r1 + 112)
3: 85 00 00 00 0e 00 00 00 call 14
4: bf 06 00 00 00 00 00 00 r6 = r0
5: b7 09 00 00 00 00 00 00 r9 = 0
6: 7b 9a c0 ff 00 00 00 00 *(u64 *)(r10 - 64) = r9
7: bf 73 00 00 00 00 00 00 r3 = r7
8: 07 03 00 00 18 00 00 00 r3 += 24
9: bf a1 00 00 00 00 00 00 r1 = r10
11: 07 01 00 00 c0 ff ff ff r1 += -64
12: b7 02 00 00 08 00 00 00 r2 = 8
13: 85 00 00 00 04 00 00 00 call 4

How does userspace
produce that bytecode?

Directly write it
byte by byte!

Clang can translate “restricted C” into eBPF bytecode
Much easier than assembling bytes like the 1960s

Still hard to write userspace interaction

Clang can translate “restricted C” into eBPF bytecode
Much easier than assembling bytes like the 1960s

Still hard to write userspace interaction

 BCC: the BPF Compiler Colection

Framework to ease writing userspace eBPF programs

Abstracts Clang and sys_bpf() interaction

“restricted C” compiled & loaded in kernel on-the-fly

Provides Python, Lua and Go bindings

Provides production ready BCC-tools

BCC program

BCC program

Compiled to bytecode
Loaded & runs in kernel

Collects data
Sends to userspace

Calls Clang to compile above code
 Loads bytecode via bpf()

Real
power
comes

with the
BCC
tools

Executive summary eBPF benefits
 System-wide observability

 No crashes / hangs

 No performance degradations

 Real-time production workload analysis

 Can be always enabled (no special debug builds) *

 Fully upstream kernel feature, active community

 Big collection of production-ready tools

 More than just observing a system
Packet filtering, hw offloading

Executive summary eBPF benefits
 System-wide observability

 No crashes / hangs

 No performance degradations

 Real-time production workload analysis

 Can be always enabled (no special debug builds)

 Fully upstream kernel feature, active community

 Big collection of production-ready tools

 More than just observing a system
Packet filtering, hw offloading

Convincing, yes?

eBPF meets embedded

multiple approaches

project advantages / disadvantages

trade-offs, no silver bullet

general / embedded-specific problems

General problem: portability / cross-compilation

Poking “outside” from within the eBPF VM

 VM has generic 64 bit instructions/registers/pointers

 Difficulty accessing 32 bit kernel/user data structures

 VM is capable of 32 bit register subaddressing

 Pointer arithmetic hacks can access 32bit offset data

 Better solution: BPF Type Format adds type info to compiled eBPF

Very fragile, not portable

(part of C.O.R.E.)

General problem: portability / cross-compilation

Portable eBPF (Compile Once, Run Everywhere)
 Dream: run precompiled eBPF an any machine and expect it to work

 Slimmer version of BCC using BTF info, no Clang runtime compilation

 Current runtime compilation uses version/config specific C headers

 Kernel >= 5.2 can remove header filesystem dependency (kinda unrelated)

 Work on-going

(structure offsets built in BTF sections, macro identifiers → BPF variables)

● Backwards, not forwards compatible
● Manually copying non-UAPI structures to “restricted C”
● Big variation of Linux kernel configs → header structures

General problem: Security and unpriviledged eBPF

Running eBPF programs requires root / CAP_SYS_ADMIN

Care must be taken when running eBPF code in production

Awesome (as always) relevant LWN.net article and comments:
 https://lwn.net/Articles/796328/

● eBPF code is assumed not malicious
● CAP_BPF will be added to restrict attack surface
● Unpriviliged eBPF unlikely to happen

● Don’t run arbitrary eBPF supplied by untrusted users
● Use additional security mechanisms like verified boot

https://lwn.net/Articles/796328/

Approach 1: Precompiled eBPF + custom userspace

PRO:
Lightest footprint possible

(few kb C program)

Kernel provides helper libbpf
(useful starting point)

CON:
Need to write from scartch

Userspace sys_bpf() interaction

Can get complex, hard to maintain
No pre-existing community

Some examples provided by Linux kernel tree
in samples/bpf/

Approach 2: Use BCC directly

PRO:
Vanilla upstream BCC

Full framework capabilities
All BCC-tools available

Well tested, good performance

CON:
Installs and links against Clang
Depends on Python (bcc-tools)

 ~ 300 MB storage

Example project: Androdeb
(Requires > 2GB storage)

Will benefit from C.O.R.E., but will still require python

Approach 3: BPFd

PRO:
100 kb bin + libc dependency

Full framework capabilities
All BCC-tools available

CON:
Hard to maintain BCC<>BPFd interaction

Host + target + transport
dependent architecture

 +---------------------------------+ SSH, Telnet +------------------------------+
 | Restricted C -> Python -> BCC <-=-------------------=-> BPFd <-> libbpf <-> kernel |
 | | | +------------------------------+
 | device kernel source -> LLVM | Embedded device
 +---------------------------------+
 Host machine

Project abandoned due to high maintenance cost

Approach 4: DSL compiler from scratch - Ply

PRO:
50 kb bin + libc dependency
High level, AWK-inspired DSL

Self-contained
Easy to build & deploy

CON:
Lack of kernel/user interaction control

Lack of BCC-tools diversity
Under heavy development
Ply binary is not portable

 +---------------------------------+ ssh/nfs/http +---------------------------+
 | ply source -+--> GCC -=--------------------=-> ply compiler <-> kernel |
 | | | | | |
 | device kernel source -+ | | script |
 +---------------------------------+ +---------------------------+
 Developer machine Embedded device

ply ‘kprobe:i2c_transfer { print(stack); }’

Full execsnoop reimplementation:
https://github.com/iovisor/gobpf/blob/master/examples/bcc/execsnoop/execsnoop.go

Approach 5: Replace BCC Python userspace with Go

PRO:
~2 mb static-compiled eBPF loader

Full control over kernel/user interaction
Good coverage of BCC API bindings

CON:
BCC-tools need rewriting in Go :)

Not much documentation

 +----------------------------------+ ssh/nfs/http +----------------------------+
 | Restricted C -+--> LLVM -=------------------=-> eBPF_ELF.o |
device kernel source -+			loaded in kernel	
Go source -> go build -=------------------=-> go_loader.bin <-> kernel				
 +----------------------------------+ +----------------------------+
 Developer machine Embedded device

https://github.com/iovisor/gobpf/blob/master/examples/bcc/execsnoop/execsnoop.go

Ways forward

 C.O.R.E. needs to be as succesful as possible

 With C.O.R.E. BCC will be more lightweight

 Gobpf can eliminate the Python dependency

 BPFd reached a dead end

 Ply is standalone, will continue its awesomeness

 eBPF on embedded is already useful today<

 Much work remaining

Recommended learning resources:

 LWN.net eBPF articles https://lwn.net/

 Brendan Gregg’s blog: http://www.brendangregg.com/blog/

 BPF Performance Tools: Linux System and Application
Observability, by Brendan Gregg, published by Addison
Wesley (2019)

 Collabora eBPF blog posts

https://www.collabora.com/news-and-blog/blog/2019/04/05/an-ebpf-
overview-part-1-introduction/

 Internet Search has wealth of information on eBPF

https://lwn.net/
http://www.brendangregg.com/blog/

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

