LINUX" KERNEL CODE REVIEW

055 - Ins

INTRODUCTION =

* Thisis a talk derived from a class | have taught at Intel.

* Itisfrom the perspective of a vendor or integration tree provider with OEM
customers.

» Thistalk is influenced by experience delivering Linux* kernels (aka evil
vendor trees) into Android* stacks that go to customers.

*Other names and brands may be claimed as the property of others.

COURSE OUTLINE

* Review course goals
* Lecture with a handful of examples from:

. -- experimental/base

« Q&A if we have time.

The examples are a bit tame. | wanted to limit my examples to publicly accessible code.

COURSE GOALS =

» At the end of this class you will understand what
exnected to look foras t

SAMSSLTW LY LU

Linux* Kernel.
o Withthisunderstanding you will know what is expected from your own code in a code review.
o You will understand the mindset of customers.
o Youwill understand the utility of good prefix discipline.
o Identify a problem patch that needs to be fixed.

o Beable to explain whatis the issue with the patch

*Other names and brands may be claimed as the property of others.

PREWORK

o

o

Did you complete your reading?

How to Get Your Change Into the Linux Kernel

Linux Kernel coding style

WHAT CUSTOMERS THINK OF YOU AND YOUR CODE. (ntel

* They do not trust you or your code.

* They do not want changes after “beta” releases other than bug fixes they
care about.

* They scrub *every* change in the tree in detail.

* They do their work on initial releases provided and want to bill you for the
overhead associated with the refresh of their trees after every update you
ship.

WHAT I THINK ABOUT CUSTOMER KERNEL PRACTICES (ntel

They are System Integration and Sys-debug teams.

* They often cant understand using anything but Gerrit to manage technical
debt.

* They don't plan for security maintenance.
+ They don't plan for rebases or migrations.
* They don't upstream bug fixes they depend on.

+ They don't provide visibility on changes they are making.

* They are driven by TTM, risk and short term costs.

HIGH LEVEL POLICIES (nte!

+ Patches MUST follow:

o}
-- Keese's BRILLO commit prefix conventions.

* Asareviewerits important to enforce this policy.

COMMIT PREFIX CONVENTIONS =

"UPSTREAM:" The commit comes from upstream from a later kernel version,and its original SHA is
noted in a “cherry-picked from ...” line at the end of the body of the commit message, before the
committer's Signed-off-by iine.

"BACKPORT:" The commitis an “UPSTREAM” commit, as noted above, just had conflicts that needed
to be resolved. The conflicts are noted at the end of the body of the commit message.

"FROMLIST:" The commitis from an upstream mailing list, and is likely to be accepted into upstream,
but has not yet landed. The mailinglist archive URL to the commit, or Message-ID, is noted at the end
of the body of the commit message.

"ANDROID:, BRILLO:, CHROME:, YOCTO:... " The commit originates from the respective OS specific
kernel tree, and is not yet upstream.

"VENDOR: vendor-name:" The commit comes from a vendor (where “vendor-name”is replaced with
the vendor), and contains commits not yet upstream.

"RFC:" A temporary state where comments are requested before attempting to upstream the commit
(after which it would move to “FROMLIST:")

EXAMPLES HERE.

Bad patch examples:
Git show 74c11ba
Git show 4ce179e

Picture a tree with 500 to 5000 patches in a single branch gerrit tree with up to
50% of the patches being like this randomly distributed and then needing to do
kernel migration.

Say, for a new SKU in your company’s product line needing an extended shelf
life in a security sensitive application.

10

STRUCTURE OF CODE REVIEWS (nte!

Review code for Supportability

o Isitclear what will happen if this patch is not accepted?

o Will this patch be supportable 1 year from now when the authors are not available?
Review code for Correctness

o Are there bugs in the implementation?
o Does it follow standards?

o Isthe design aligned with upstream?

Can someone, capable of reading C-code and knowing a little about kernel programming,
make progress debugging issues with any of the patches without calling for support?

11

SUPPORTABILITY

a - H P, mamdm mla ol Lo o Y. I e
- COITHTHL COTTHTIETNIW Slidll e mmearnrigiut ariu accurdie
o Explains what will break without the change.
o Explains why the change isimportant to take.

o Explain what the change is.

o Matchthe actual change.

12

SUPPORTABILITY

* Good commits are sentences in the story of the tree history.
o Theyeach need to stand alone and make sense just like complete sentences.

o Sentence fragmentsare bad. For example, when a header is changed to add a define but
nowhere in the patch is the define ever used.

Many times incomplete or fragment commits result form porting patches forward.

13

SUPPORTABILITY

(intel

Locking needs to be documented as to what the lock is protecting and it
o make sense

Magic numbers need traceability to specifications whenever possible and
inline documentation for why the number is what it is even if its
“experimentally derived”

Complicated or confusing logic needs helpful inline commenting

Tracing: printk’s / log messages all need to make sense and provide useful
data while still being kept to a minimum.

Delay loops are a problematic use of magic numbers and need special attention.
Every log message is a potential support call that costs money. We need to make them
count!

14

SUPPORTABILITY

Reverts are common.
Protect work from reverts don't mix bug fixes with features.

Do not accept multiple bug fixes within a single patch.

Nobody likes being forced between accepting a regression and a needed feature. Don’t be
that guy.

15

SUPPORTABILITY

wn
O
3
()]
~+
=
J <
o ¢
©
o
-]
~+
wn
QO
~+
~+
2‘~<
)
©
QU
~+
8]
=0
C
-]
o
()]
-~
=
()]
<
()]
2
0 N

¢ or

* Imagine 2 years from now when you can no longer provide effective security
maintenance and are forced by business needs to migrate the patch to a new
kernel baseline.

o Isthe description/code/comments clear enough to then figure out
what this patch is about?

o If needed, can | then keep the goodness in it even if | need to redo
some of it?

EXAMPLE HERE =

Positive example of a good quality patch that is hard to say no too even on a
bad day.

Git show 6d1cc7ba

17

CORRECTNESS

Is the logic correct?

o Areth

LR R L}

re cut and naste errors?
NG pasie errors«

o Are exception or error paths correct?
o Isthe locking sane?

o Does the code make sense?
Does the code match the commit comment?
Does the commit comment provide justification for the patch?

Is the code aligned well with upstream (kernel.org) directions?

Does it explain what will break if the patch is not accepted?
alarmtimer_suspend CONFIG_RTC_CLASS example.

18

CORRECTNESS

Is memory allocation and deallocation done properly?

o Check error paths for memory leaks.

Check global variables.

o Check/ askif the global is really necessary.

o Check/ askif the global needs an associated lock to protect it from concurrent access.

19

CORRECTNESS

Is the locking sane? Is the locking model documented?
* Remember locks protect “data” (not code) from concurrent access.

* Iswhat is being protected by a lock documented?

Review the static analysis output and use good judgment:
o Isthe code conforming to coding standards? (Remember the reading from the prework!)

o Is the code adding compiler warnings?

o Isthe code passing staticanalysis checks?

20

AWORDABOUT CHECKPATCH.PL =

* We cannot treat checkpatch as a judge.

* Checkpatch.pl will sometimes call out errors that cannot be fixed and as
such we can't rely on it within an automation setting.

* We need kernel reviewers to review the checkpatch output and decideif it
needs to be fixed.

» Developers need to be ready for challenges from the reviewers WRT
checkpatch warnings and errors.

21

CORRECTNESS

(intel

Security issue scanning :

o Reviewthe security analysis results and be very careful before accepting the patch if there is any
issues identified by the scan.

o Ask for help if you are not sure before dispositioninga possible security issue as false positive.

22

CORRECTNESS

Is the code compliant with IP plans and guidelines?

Is the code in compliance with Legal and business policies:

o

o

Does the patch leak confidential informationin the comments?

Does the patch touch un-documented registers or use previously undocumented valuesin
MSRs?

Business approvals exist for the IP the code is for.

Where was the content sourced from (see next slide)?

o Does it leak new IP information by its implementation?
o Isthat IP information approved for publishing under GPLv2?

23

EXTRA CHECKS WENEEDTO DO

Make sure proper attribution is provided to code adapted from any external
source.

(o]

o

(intel

It's more than just a plagiarism issue.
Note knowing how to use “git --amend --author="is an acceptable excuse.
Customers need to know the background for our patches so they can have more trustin them.

If you are pulling ideas/code from external sources you have to point it out and provide
attribution.

= |ts an easy mistake to do when you are in a hurry.

= Providing background on patch origins provides credibility via
herd mentality.

= |t’simportant to have a good perception of yourself and your
employer in the open source community.

DETAILS OF AGOOD CODE REVIEW

Review for Supportability and Correctness.

Help good code to get in quickly.

Assist time critical changes become good enough to go in quickly with
reasonable “get well” plans if follow up commits are needed to fix up issues.

Help rewrite problematic commit comments or code if needed.

25

DETAILS OF AGOOD CODE REVIEW

* Provide actionable feedback to the author.
o Makingclear what feedback must be acted on to get merged.
o Provide explanation for why the code needs to be changed.

o Trytomake sure all the issues are reported in the first review. We want to avoid harassingthe
author with multiple review cycles where new existingissues are raised after the author
addresses whatever was commented on in the earlier reviews.

* Do not compromise on supportability! It is likely to bite you and your
company in the future if you do, with customer escalations.

Note: mistakes happen but, we want to avoid a “bring me a rock” situation.

26

DETAILS OF AGOOD CODE REVIEW

* When discussions stall proactively reach out to the developer and
management.

* Don't be afraid to ask for additional review help!
* Give examples.
* Mentor and teach.

* Be patient and consistent.

o Many companies have experts you can ask for help from. Use
them when you are unsure as a reviewer.

o Take notes and learn from the experience! Don’t miss out on the
opportunity for you to grow yourself technically!

27

CALLTO ACTION / KEY TAKE AWAYS

Understand how patches are used by customers.

Review patches assuming they need to be reused across kernels and your
business depends on efficient reuse.

Use good prefix conventions!
Stop writing bad patches with crappy commit comments:

= When you write bad patches nobody likes you.

28

THANKYOU! - QUESTIONS?

29

DISCLAIMER

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

srvhar namae and hrande m ad ac tha nrone .

*Other names and brands may be claimed as the property of others.
© Intel Corporation

30

