

Extending Android via
External Microprocessors

Copyright 2013,
The PTR Group, Inc.

Mike Anderson
Chief Scientist

The PTR Group, Inc.

mike@theptrgroup.com

ABS-SClara-0428-2 Copyright 2014, The PTR Group, Inc.

Android and the outside world

Strategies for adding new sensors

Real-time Android?

Why add external microprocessors/ Cs?

Code for the C vs. Firmata

Connection strategies

ABS-SClara-0428-3 Copyright 2014, The PTR Group, Inc.

Android and the Outside World

Android knows about a number of device
classes out of the box

Gyros, accelerometers, compass, GPS, etc.

Integrated through libsensors into the
Android framework

Adding new sensors to the platform
would normally require rebuilding the
AOSP libsensors and reflashing the
system

easily done for multiple platforms

ABS-SClara-0428-4 Copyright 2014, The PTR Group, Inc.

Adding Control Capabilities

The real world is filled with opportunities to
add new interfaces

CAN bus, GPIOs, A/D, D/A, PWM, I2C, SPI, etc.

the typical handset/tablet

We could build a custom Android device
We would need custom hardware just to wire the
signals out of the Android platform
Additionally, there would be significant effort to
get, modify and rebuild the platform sources

for even soft real-time control
Focus is on Java behavior

ABS-SClara-0428-5 Copyright 2014, The PTR Group, Inc.

Alternate Extension Options

Android natively supports several different
connection options

USB, Wi-Fi, Bluetooth and NFC

Via one of these connections, we can use an
external device for the interface to the real
world and use Android for control and UI

Offload the time-sensitive work to dedicated
hardware

Goal is to save cost while being able to
guarantee service

ABS-SClara-0428-6 Copyright 2014, The PTR Group, Inc.

Real-Time Android?

What do we mean when we say

Computing with a deadline
The consequences for missing a deadline determine

There have been many attempts to look into
making Android real-time capable

First, we could add PREEMPT_RT to a modern kernel
w/ Android support

But, this is just a small part of the problem

In user space, the Dalvik VM is not even close to
deterministic

Experiments show significant jitter and latencies

Replacing Dalvik is a huge undertaking and not
practical

ABS-SClara-0428-7 Copyright 2014, The PTR Group, Inc.

Embedded vs. Real Time

Embedded and real time are not the same
thing

Embedded typically means there is a

sure where

TV sets, printers, routers, Blu-Ray players, etc.

Embedded Real Time
(Deterministic)

RT

Emb

ABS-SClara-0428-8 Copyright 2014, The PTR Group, Inc.

Android is Embedded, not R-T

So, an out-of-the-box Android device
-based

computing

It might be fast enough most of the time, but

We would like to be able to offload the
R-T constraints to something else and
use Android for the UI

This is where we come to using an
external microcontroller (C)

ABS-SClara-0428-9 Copyright 2014, The PTR Group, Inc.

External Microcontrollers

There are a number of popular microcontrollers these days
8-, 16- and 32-bit variants

sufficient RAM
Cs include the 32-bit ARM Cortex M3/M4 with 512K RAM

They might run an RTOS or they might be bare metal
FreeRTOS runs on a number of ARM Cortex M versions
Arduino is bare metal

Examples include:
Atmel AVR (Arduino)
Microchip PIC24/PIC32 (incl. IOIO board)
TI MSP430
Various ARM Cortex M0/M3/M4 flavors

Each of these has its own development environment
Tools will typically run under Linux but may require WinDoze or
OS/X

ABS-SClara-0428-10 Copyright 2014, The PTR Group, Inc.

Example Boards

IOIO

PIC24

Arduino UNO

AVR

TI Launchpad

MSP430

LXP1549

ARM Cortex M3

ABS-SClara-0428-11 Copyright 2014, The PTR Group, Inc.

Two Approaches to the Problem

There are typically two approaches to
using a C

We can write code to run on the C and
use the C to control the data collection
and/or control

Requires learning the C IDE and control APIs
Some APIs are very simple, others can be almost as
involved as the Linux APIs

approach

ABS-SClara-0428-12 Copyright 2014, The PTR Group, Inc.

Example Development Environments

Many IDEs use standard
GNU tool chains
Some Cs require
proprietary tool chains
Make sure to read the fine
print
Arduino has a development
environment for Android

ABS-SClara-0428-13 Copyright 2014, The PTR Group, Inc.

Some Cs support a special firmware load

the Arduino community
Uses a serial interface and simple
application to export all of the pins on
the C to the controlling host

Many examples for the Android side of this
on the Play Store
The IOIO board also uses this approach

Unfortunately, not compatible with the
Arduino Firmata

Turns the C into a dumb peripheral
requiring Android to send commands
and retrieve data

address the time-sensitive control issues

Source: google.com

Source: google.com

ABS-SClara-0428-14 Copyright 2014, The PTR Group, Inc.

Should you Program or use Firmata?

As with most things in embedded, the answer is

Using a Firmata approach means you can likely
leverage existing .apks from the Play Store

But, you force all of the data collection and
processing onto the Android device

Programming the C takes more time, but allows
you to do the time-critical code on the C and
communicate as needed to the Android device

well to pack and unpack the data

Software on the C can operate as polled or
interrupt driven or a mix

You partition the work as best suits the problem

ABS-SClara-0428-15 Copyright 2014, The PTR Group, Inc.

Connections to the C

Many C boards have a broad selection of
connectivity options

Serial, Bluetooth, IEEE 802.15.4, USB,
Ethernet, Wi-Fi, NFC and more

Some of these are native to the C board and
some are via external mezzanine buses

Regardless of the transport layer, most
connectivity boils down to serial
communications

With the exception of Wi-Fi and Ethernet
which look more like BSD sockets

ABS-SClara-0428-16 Copyright 2014, The PTR Group, Inc.

Due to the size and pervasiveness of the
Arduino ecosystem, many 3rd party
boards have adopted the Arduino pin out

Support for I2C, SPI, A/D, D/A, PWM and
GPIOs with 3.3V and 5V power and ground

This gives access to hundreds of plug-in

ABS-SClara-0428-17 Copyright 2014, The PTR Group, Inc.

Shields Up!

A variety of shields are available:

Bluetooth, ZigBee, Ethernet, GPS,
protoboard, relays, MIDI,
SD Card, LCD, motor controllers, joysticks
and many, many more

Some shields can be stacked
to create complex systems

Source: shieldlist.org

ABS-SClara-0428-18 Copyright 2014, The PTR Group, Inc.

Typical Arduino Pin-out

Source: zembedded.com

ABS-SClara-0428-19 Copyright 2014, The PTR Group, Inc.

Boards with Arduino Pin-Outs

Arduino Tre Udoo Intel Galileo

Arduino Due Gertduino 86Duino

ABS-SClara-0428-20 Copyright 2014, The PTR Group, Inc.

Overview of I/O Capabilities

The major variants:
ATmega328 (Uno)

14 DIO (4 with PWM)
6 analog inputs
2 external interrupt lines
1 UART (simple 3 wire)
JTAG
2 8-bit, 1 16-bit timer

ATmega2560 (Mega2560/ADK)
54 DIO (14 with PWM)
16 analog inputs
6 external interrupt lines
4 UARTS (simple 3 wire)
JTAG
2 8-bit, 4 16-bit timers

Most Arduinos implement a USB to Serial interface for the UART
Used to program the Flash as well as for serial I/O

There is support for Ethernet via the Wiznet 10/100 Mbps W5100
interface (SPI)

Wi-Fi and Bluetooth are supported too

ABS-SClara-0428-21 Copyright 2014, The PTR Group, Inc.

Android ADK

In 2011, Google introduced the Accessory
Development Kit (ADK)

Used USB to connect Arduinos and IOIO to
Android device

A standard part of Android since 2.3.4

In 2012, Google released ADK2 which added
Bluetooth support and support for ARM
Cortex M3 (Atmel SAM3x)

Really the ADK is just a protocol
specification

Gary Bisson, ABS 2013 -- https://github.com/gibsson

ABS-SClara-0428-22 Copyright 2014, The PTR Group, Inc.

Android and USB

Android devices still tend to be USB devices
rather than USB hosts

Arduinos w/ USB host shield play the role of
USB host and drive the initial connection

Android detects the addition of a USB device
and looks at the handshake to determine the
app to run to service the accessory

USB appears as a serial stream to the
accessory

You are responsible for packing and unpacking
the messages on both sides

ABS-SClara-0428-23 Copyright 2014, The PTR Group, Inc.

Bluetooth

Most Cs that support Bluetooth support
the SPP

ADK2 supports A2DP for stereo audio

Bluetooth works just like a serial port
once the device is paired

Bluetooth Smart reduces the issues of pairing
with Android devices with Bluetooth Smart
support

There are several apps on Play
Store that support Android to C
connection via Bluetooth

Source: google.com

ABS-SClara-0428-24 Copyright 2014, The PTR Group, Inc.

Wi-Fi

Many Cs support Wi-Fi using
the H&D Wireless HDG104 Wi-Fi
chipset

Hardware TCP/IP core
with built-in webserver

Data storage via SD Card

Exports a socket API
to the C

Supports both TCP and
UDP sockets

Source: google.com

ABS-SClara-0428-25 Copyright 2014, The PTR Group, Inc.

Summary

Android is a capable platform, but its not easy to
natively extend without substantial customization
to the hardware, software or both

Adding external Cs provide additional interfaces
not supported by Android and allows us to better
partition the problem

Without the need to rebuild the AOSP sources

-type interfaces to the
Cs unless we have very lax timing requirements

We have a number of connectivity options so we
can chose the connection based on speed and
remote access requirements

