There |Is No Store
For Self-Driving Car
Parts

Running the Ultimate Battery-
Powered Device with Linux

Stephen Segal and Matt Fornero. Cruise LLC
Embedded Linux Conference North America 2020

cruise

Agenda . About Us

2. The Vehicle
3. Challenges
4. Buildroot

0. Booting

6. Device Management

cruise

Cruise

e Majority-owned subsidiary of General
Motors

e Additional investment from Honda and
others

e Based andtesting in San Francisco

We're building the world’s most advanced
self-driving vehicles to safely connect people

with the places, things, and experiences they
care about.

(8]
e

L] nau'u;’-;[- L -
™M Y

— .
e
‘-l 7
T WL 4
Dy
> ﬁ.
4% i
& +
T A
YA 3
&5 &)
v .. - 1
” !
’ A
P3G
s‘-‘} M
¥ Byt
y
.)N‘
-
L. "
&
Ay, ‘73:
. >

||
)

i

=

cruise

Cruise Origin

A new all-electric vehicle designed from the
ground up for autonomous ride-sharing.

e Designed to last for more than | million
miles.

e Modular, so sensors and components can
be easily replaced over time.

o Will be built for roughly half the cost of a
conventional electric SUV.

-
LT
I §
e

i

cruise

Cruise Embedded
Systems

We provide the interface from the
driving stack to the rest of the vehicle.
This includes:

e Bringing up custom hardware
e Providing Linux OS images

e Developing application-level software
for edge devices

Or for the less technically-inclined:

e \We figure out how to get a
supercomputer into a car.

cruise

The Cruise Autonomous Vehicle (AV)

cruise

The Cruise Autonomous Vehicle (AV)

We make a lot of custom hardware...

cruise

A Heterogeneous High-

Performance Computer
on Wheels

® Sensors
o Cameras
o LiDAR
o Lots more...

e |In-car Networking Infrastructure

e [elematics

e Core Compute

10

cruise

Suppliers

Qur hardware comes from various
sources

e [raditional Tier | automotive suppliers
e Internal designs
e Non-automotive IT vendors

e Components not related to autonomy
are typically sourced by GM

Software is largely developed in-house

e [his allows us to iterate quickly and
ensure consistency.

11

cruise

Cars and Linux e [ier | automotive suppliers have little
experience with Linux

o Normally work with AUTOSAR and other
RTOSes

o Not used to developing hardware for a
customer-provided Linux operating system.

e Automotive-qualified parts don't
always provide Linux drivers or
support

o Automotive SoCs with Linux support are
often limited to parts designed for
infotainment systems.

o Vendors of automotive-specific peripherals
often don't provide Linux support at all.

13

cruise

A Brave New World

Autonomous vehicles represent a
globally-unsolved problem:

e Many of the components we're
building have never been built or
contemplated before

o Often the components we really need

(SoCs, peripherals, etc.) don't actually
exist.

e Still, some are more typical. When

possible, we want to leverage existing
designs

o We don't want to unnecessarily invent new
stuff when we have so much necessary
new stuff to invent.

14

cruise

Hardware Capabilities

e Our devices range from large high-
performance computers to small

thermally and compute constrained
components.

e Majority of autonomy-related

components are x86-64 or ARMvS-A
systems.

o Some ARMv8-A SoCs contain an

additional microcontroller core for
functional safety and real-time
operations

o Traditional electronic control units

(ECUs) are developed by our OEM
partners.

15

cruise

The Challenge

Ultimately we want to

. Support a large number of diverse
devices.

2. Ease development of new devices
when the nature of such devices isn't
always predictable.

3. Guarantee high and predictable
reliability

4.Secure the on-vehicle computing
infrastructure.

16

cruise

The Tools

How do we do all this?

|. Enforce consistency when possible.
2.Use common repositories and tools.
3. Don’t invent things unnecessarily.

4. Design for maximum flexibility.

17

cruise

Why Buildroot?

We use Buildroot as a build system

e Goal: Build a firmware image, not a
distro

e Simplicity: Easy onboarding for new
developers

e Speed: Performant clean builds

e Sustainability: Simple support for
internal package mirrors / monolithic
repo

e Extensibility: Can be easily extended
with new functionality

19

cruise

Why Extend Buildroot?

e Must support building lots of different
boards with varying requirements

o Config layering to ensure a
consistent set of applications

o Allow developers to easily switch
between boards.

e Allow target selection, separating
output directories per target

e Ensure similar organization

o Support automatic test execution as
part of continuous integration.

20

cruise

Repository Organization

A top-level Makefile manages the system
and allows selecting a current target
o Manages output directories and
concatenating the configuration
layers
o Provides targets for automatic
download of images to a board
Buildroot maintained as a git submodule.
o We typically maintain a branch off
each LTS release.
o Move once a year.
A local apps directory for storing simple
applications and libraries that don't merit
a separate repository.
A place for out-of-tree kernel modules

e An output directory that contains build

products: this is separated by build

EERRRRRRRRRREE

apps
br2-external
buildroot
buildroot-cache
Ci

docs
linux-kernel
Makefile
makefiles
output

OWNERS

ReadMe .md
remote

scripts
VERSION. txt

2]

cruise

brZ2-external

External Buildroot layer

e Stores Cruise-specific packages and
infrastructure.

e Generally follows Buildroot’s
recommended format.

e We also occasionally inject dependencies
and functions into existing packages from
within br2-external

o Compared with maintaining Cruise-
specific patches on Buildroot itself, we
find this the lesser evil.

NERRRRRRRRRR

apps
br2-external
— Dboard
— Config.in
— configs

— dependency-fix.mk

— external.desc

— external.mk

— package

— package-cleanup.mk
L— support

buildroot

buildroot-cache

Ci

docs

linux-kernel

Makefile

makefiles

output

OWNERS

ReadMe .md

remote

scripts

VERSION. txt

22

cruise

Configuration Layering

e \We maintain layers (defined as Kconfig
include files) for various packages
e The master configuration file for each
board is run through the C preprocessor
prior to building.
e \We generally maintain layers for things
like:
o Architectures
o Specific SoCs
o Common peripherals

#ifndef ARCH AARCH64
#define _ ARCH AARCH64

#include "common/config base.inc"

Common settings for AArch64 (64-bit ARM) systems
BR2_aarch64=y

BR2 TOOLCHAIN EXTERNAL GDB_ SERVER COPY=y

BR2 TOOLCHAIN EXTERNAL=y

BR2 TOOLCHAIN EXTERNAL ARM AARCH64=y

#endif // _ ARCH AARCH64

23

cruise

TeStI ng define inner-cruise-test-package
. _ # define sub-target stamps
o Allow packages to define a function that $(2) TARGET TEST = $$($(2) DIR)/.stamp_ tested

executes tests. # pre/post-steps hooks
e Runningthe new make target Kpackage>- $(2) _PRE_TEST_HOOKS 7=
. $(2) POST_TEST HOOKS ?=
test’ will cause the test to be run
human-friendly targets and target sequencing

e For now, we've only implemented this for §(1)-test: $5(5(2) TARGET TEST)
host packages. ifeq ($(2) TEST_INSTALL,YES)
, $$($(2)_TARGET_TEST): $$($(2)_TARGET _INSTALL $(call UPPERCASE,$4))
o For some packages, testing the target “lae
oackage in QEMU may be useful but iiéféz)_TARGET_TEST): $$($(2)_TARGET_BUILD)

we haven't explored this yet.
define the PKG variable for all targets, containing the

O We’d CI|.SO l.ike tO iﬂtegrOte thiS With # uppercase package Var-iab]_e pref-lx
our hardware-in-the-loop (HIL) B (B2)_UAREE_TEST) - RKGS3(2)
testing. PHONY: $(1)-test
® Running‘make hOSt'<paCkage>'teSt\ # Add target to list for global host-cruise-test target
: ifdef $(2) TEST_CMDS
will run the host‘ test for that pockoqe. e G
e Runningtarget ‘make host-tests will ifneq ($$($%$($(2) KCONFIG VAR))$$($$($(3) KCONFIG VAR)),)
1 ‘ i d " HOST CRUISE TEST TARGETS += $(1)-test
cause all tests Tor contigured packages to HOST_CRUISE_TEST_BUILD_TARGETS += $(1)
be run endif
. . endif # ($(4),host)
o We use this as part of continuous endif # $(2)_TEST_CMDS

integration (CI).

endef # inner-cruise-test-package

cruise

Continuous Integration

e Build & test each each board as a pre-
merge check

e |everage helpful buildroot tooling to
speed up builds:

o Source (download directory) caching
o ccache support (per board)

e |everage our test framework to run tests
for every enabled package that defines
them

e Enable automatic testing of the firmware
on HIL for applicable systems

code
checkout

IEnarﬂ [Config A

-
I

L

-

25

-

merge

L

-

lint

......... 1
fES"i':ﬂ:ﬂ”mE_._ ;isa'j:“':z build test (Cl) publish {—s-1 test(HIL) —}—
—————————— _I
Board Y [Config B
- L
T M TR0 build test (C) publish test (HIL) |}
—

https://ccache.dev/

cruise

Bootloader Consistency

One of our goals is to maintain
consistency among platforms.

Bootloaders are inherently board-

specific, so consistency is a challenge
here.

Still, there are ways...

27

cruise

General Requirements

First, we need to decide what
requirements we can reasonably
commonize:

e Secure boot

o Hardware support for this is a hard
requirement at Cruise.

e Redundant OS images

e |nitial flashing procedure

28

cruise

U-Boot We use U-Boot on our ARM-based
boards:

e Well-known and supported
e Extremely configurable
However, this brings some challenges:

e S50C vendors almost always provide a
custom fork of U-Boot.

o May not be recent

o Feature set can vary based on
vendor's interests

29

cruise

U-Boot

We want to enforce:

. Easy maintenance: Carry as few

patches to the vendor's U-Boot fork as
possible.

2. Consistency: Enforce common
standards among all boards.

3. Flexibility: Accelerate code reuse
while current and future boards may
possibly use different U-Boot forks.

How do we do this?

30

cruise

Common U-Boot
Requirements

We can't require all vendors to work
from the same tree, but we can enforce
requirements as part of procurement:

e Signature validation support
e Network access

o Useful for bring-up and recovery

e Peripheral access (I1°C, SPI, eMMC,
etc.)

We can use this to aid part selection,
and even if we can't get everything, the
gaps are well-known in advance.

31

cruise

Common U-Boot
Functionality

e Use device trees as much as possible.

o Make this part of SoC vendor
requirements if possible

e Use a common U-Boot script to
contain common functionality.

o Scripts are U-Boot best practice
o Can be signed for security

o Can be generated from a template
to contain common and board-
specific functionality.

32

cruise

U-Boot Scripting

e Thisis an excerpt of a script where we
attempt to netboot as a recovery
mechanism.

e By putting code like this into a common
script, this functionality is instantly
available on all boards.

e We work with our hardware team and
any external vendors in the design phase
to ensure necessary network access is
available in U-Boot.

Tr
sete
unti

done
echo

y netboot 3 times

nv i 0

1 test $i -eq 3; do

setexpr i $i + 1

tftp && bootm

echo "*** Netboot attempt Ox${i} failed"
Ssleep 1

"+++ Netboot unsuccessful."

33

cruise

U-Boot Changes

Lastly, some U-Boot changes may be
unavoidable, like board-specific
initialization.

We keep these as minimal as possible,

and ideally contained to U-Boot's
normal customization methods.

34

Device

MC]I‘\C]

cruise

A Distributed Computing
Environment

Our autonomous driving system is

effectively a large distributed computer
system.

e Performing an update means

deploying software to all nodes in our
network.

e All nodes need to be in a

known/expected state for the system
to function as intended.

36

cruise

Consistent Upgrades

37

In this world, consistency is key. If every
component exposes a similar update
interface, orchestration of updates is
radically simpler and more reliable.

We use swupdate to manage updates
among all the devices in our system,
using broadly-common configurations.

https://github.com/sbabic/swupdate

cruise

Consistent Upgrades

e |n order to automate the use of swupdate,
we provide a REST AP to interact with it
e This provides a consistent APl across our
devices for:
o Version Querying
o First-time flash
o Applying updates
e Building on this REST API allows us to
easily build client tools to interact with it in
various settings
o Manufacturing
o Development
o Deployment

swupdate REST API

APIs for interacting with the software update (swupdate) tool
APIs

Get software versions

Attribute Value

URI lapiivl.0/swupdate/sw-versions

Method GET
curl http://<url=:<port>=/api/v1.0/swupdate/sw-versions

Return a JSON message containing the versions of all software running on the system

"api": "/api/vl.0/swupdate/sw-versions",
"status": "success",
"wersions": [

{
"name": "<sw pkg 1=",
"version": "<sw pkg 1 version="

1,
.|

38

cruise

Image Deployment

e Core compute functions as master.

o Can be update itself via swupdate,
triggered via a proprietary update
service

o Updates only occur when vehicle is in
a quiescent state (i.e. in the garage)

e Core compute can query and update
edge devices as needed.

e All devices must be in known and
expected states before the AV system can
operate.

e [t can also function as a TFTP-server-of-
last-resort, for devices that enter their
TFTP recovery state.

39

cruise

Redundant Redundancy

Many of our components are difficult to
physically access.

We need to ensure that they're always
accessible and are extremely difficult to
render inoperative via software.

We do this using the common practice
of having redundant copies of
everything.

This includes the bootloader if practical.

40

cruise

Redundant Redundancy

Two kernel and rootfs images.
OS images are secured using U-Boot
signed images, rootfs using dm-verity.

e Bootloader automatically attempts to
TFTP boot a kernel image if no OS can be
loaded.

o Image still must be signed
o Also used for initial flash purposes

Bootloader Partition

W e = [g
b = —— ~

Writeable Bootloader Environment

FIT Image (1)

FIT Image (2)

ROOTFS (2)

ROOTFS (1)

Update Primary
Copy

Writeable Bootloader Environment
FIT Image (1)

ROOTFS (2)

)

Update Alternate
Copy

ROOTFS (1)

cruise

Putting It All Together

Ultimately, we need to be able to
rapidly innovate completely new
hardware.

To do that we:

e Use common, well-known, flexible
tools

e Define common reusable software
components and configurations

e Don't reinvent the wheel (there’s

plenty of other parts of the car to
reinvent)

43

cruise

More Information

e Some relevant Cruise blog posts:

o Cruise Hardware: How we source
and design hardware

o Vehicle Security: How we think
about security

e Other info

o We were heavily influenced by

previous ELC talks, especially this
one by Yann Morin at ELCE 2017/.

44

https://medium.com/cruise/building-self-driving-hardware-at-scale-29589d2b4a09
https://medium.com/cruise/how-to-prioritize-self-driving-car-security-4293c480c75d
https://www.youtube.com/watch?v=SN2hYO2rYtk

