
Mirza Krak
Embedded Solutions Architect

Mender.io

Strategies for developing and deploying your embedded applications and images

● Development workflow
● Application
● Embedded systems
● What tools are available

Scope

● Desktop environment
● Embedded environment
● Development workflow (simple)

○ Package managers
○ Yocto/OE-core Package Management

● Development workflow (advanced)
○ Network boot
○ OTA updater as developer tool

Session overview

● Mirza Krak

○ 7 years in Embedded Linux
development

○ U-boot and Linux kernel
development

○ Yocto/Buildroot

○ mirza.krak@northern.tech

About me

● mender.io

○ Over-the-air updater for Embedded Linux

○ Open source (Apache License, v2)

○ Dual A/B rootfs layout (client)

○ Remote deployment management (server)

○ Under active development

● High availability
○ “apt-get install”
○ trace and debug tools

● Same machine
○ Build, Run, Test

● Short cycles
● Keep development here

○ “Mock” hardware
● Be aware

Desktop environment

● Possible
● Armbian/Ubuntu/Raspbian
● Drawbacks

○ slow compile times
○ slow in general compared to PC
○ IDE, favorite editors
○ Not really viable in the long run

Desktop environment on embedded

● Cross-compile
● Accepted approach
● Introduces complexity
● Multiple devices

Cross device development

● Entry point
● Transfer files

○ Manual work
○ Error prone
○ Hard to replicate across

many devices

Transfer files

scp application
root@device:/usr/bin

tftp -g -r application
hostname

scp *.conf root@device:/etc

● Eclipse, Qt Creator..
○ Cross-compile
○ Post-build hooks

Transfer files - IDE

● Package Manager
○ A collection of the software tools for automating the process of

installing, upgrading, configuring and removing packages
● On target package managers

○ opkg, deb, rpm
● Common package management utilities/systems

○ apt, yum, dnf, pacman, zypper, smart

Package managers

● Package application + additional files
○ “make dpkg”

● More control
● More sanity checks

○ Dependency tracking
○ Upstream package feeds
○ Custom package feeds

● Useful during development
○ especially early phase of projects
○ Utilities (strace, evtest, tcpdump, iperf)

● Not always available

Package managers

Package managers comparison

deb rpm ipkg opkg

File format .deb .rpm .ipk .ipk

License GPL GPL GPL v2 GPL v2

Development
status

active active discontinued active

Yocto/OE
support

yes yes no yes

Package
installation

dpkg -i file.deb rpm -i file.rpm ipkg install file.ipk opkg install file.ipk

Build time
(Yocto image)

~226 minutes ~251 minutes ~209 minutes

● The Angstrom Distribution
○ maintains opkg package feeds
○ meta-angstrom

■ angstrom-v2018.06-sumo
○ DISTRO = “angstrom”

OE-core + Package managers

“opkg update && opkg install vim”

● Yocto/OE-core generates packages (rpm, deb, ipk)
○ PACKAGE_CLASSES ?= "package_ipk"
○ build/tmp/deploy/ipk/

● Easy to convert to a custom package feed
○ “bitbake package-index”

● Serve the feed on the network
○ “python -m SimpleHTTPServer 8000”

Yocto/OE-core + Package managers

● Tools on target
○ EXTRA_IMAGE_FEATURES += " package-management "

● Configuration on target
○ meta-openembedded/meta-oe
○ distro-feed-configs.bb

● DISTRO_FEED_PREFIX
● DISTRO_FEED_URI
● DISTRO_FEED_ARCHS

Yocto + Package managers

.

└── etc

 └── opkg

 ├── all-feed.conf

 ├── core2-64-feed.conf

 ├── corei7-64-feed.conf

 ├── corei7-64-intel-common-feed.conf

 ├── intel_corei7_64-feed.conf

 └── x86_64-feed.conf

$ cat etc/opkg/core2-64-feed.conf

src/gz remote-core2-64 http://my-distribution.example/remote-feed//core2-64

Yocto + Package managers

● Workflow
○ make changes
○ rebuild package index
○ “opkg update && opkg install” on device

● “bitbake world -k”

Yocto + Package managers

● Configuration management tool
○ A tool used for populating and enforcing host

configuration (adding/removing/updating software,
adding/removing users, changing files permissions, …)

● Tools available
○ CFEngine, Puppet, Chef, Ansible

● Configuration strategy
○ Install the “golden image” on the device
○ Install a CM server and create a set of rules for

managing/changing the device configuration
○ Setup connectivity and trust between CM server and

the device
○ Change the device configuration using the CM agent

Configuration management tools

● Custom kernel options
● Customer configuration options on system applications

○ systemd, busybox, network manager
● Custom hardware

Scope bigger than a single binary

● All resources are available on the network
● Some complexity involved in the setup
● Requires reboot on the target device to load new software
● Can be easily extended to multiple devices
● Common in CI/CD

Network boot

● PXELINUX
● tftp / pxe

○ Kernel (uImage) and dtb
○ initrd

Network boot

------------/tftpboot/pxelinux.cfg/menus/linux.list----------

menu title Linux selections

Just another label

label linux-2.6.38

kernel kernels/linux-2.6.38.bin

append root=/dev/sdb1

● Script it
● NFS root file-system
● tftp/tftpboot

Network boot

setenv ipaddr 192.168.1.3

setenv serverip 192.168.1.2

setenv bootargs 'ignore_loglevel rw root=/dev/nfs nfsroot=192.168.1.2:/nfs/h3ulcb,nfsvers=3
ip=192.168.1.3:192.168.1.2::255.255.255.0:h3ulcb'

tftp 0x48080000 Image; tftp 0x48000000 Image-r8a7795-h3ulcb.dtb; booti 0x48080000 - 0x48000000

https://elinux.org/R-Car/Boards/Yocto-Gen3

● Can be used as a development tool
○ mender, rauc, swupdate...

● Integrate early in the development cycle
● Many benefits

○ Similar to production
○ Validation of the update solution
○ Image based update

■ Simplifies testing
■ Stateless
■ Avoid bricking devices

Update solutions

● Fits well into the developer workflow
○ Easy integration with CI/CD systems

Update solutions

● Mender
○ A/B image updates

● Standalone mode
○ CLI
○ Supports fetching updates via network

● OTA updates
○ Can be integrated with CI/CD

OTA updater

mender -rootfs http://192.168.1.10/core-image-base.mender

Thank you

Questions?

