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Introduction to IIO

● Industrial Input/Output framework
– Not really just for Industrial IO

– All non-HID IO

– ADC, DAC, light, accelerometer, gyro, magnetometer, humidity, temperature, rotation, 
angular momentum, lifestyle sensors ... 

● Developed by Jonathan Cameron
● In the kernel since v2.6.32 (2009)
● Moved out of staging/ in v3.5 (2012)
● ~220 IIO device drivers (v4.6)

– Many drivers support multiple devices



  

IIO Structure

● Device represents logical 
functional unit
– Typically a piece of physical 

hardware

● Attributes
– Describe hardware 

capabilities

– Allow to change hardware 
configuration



  

IIO Structure

● Channels represent data 
channels
– Channels have a type and 

direction

– E.g. ADC has voltage 
channels

– Channels can have attributes

● Buffers are used for 
continuous data capture



  

IIO Kernelspace API

static const struct iio_chan_spec adc_channels[] = {
    {
        .type = IIO_VOLTAGE,
        .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
        .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),
        .indexed = 1,
        .channel = 0,
        .scan_index = 0,
    },
    ...
    {
        .type = IIO_TEMP,
        .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
                BIT(IIO_CHAN_INFO_AVERAGE_RAW) |
                BIT(IIO_CHAN_INFO_SCALE),
        .indexed = 1,
        .channel = 0,
        .scan_index = 8,
    }
};



  

IIO Kernelspace API

static const struct iio_info adc_info = {
    .read_raw = &adc_read_raw,
    .write_raw = &adc_write_raw,
    .driver_module = THIS_MODULE,
};

struct iio_dev *indio_dev;

indio_dev = iio_device_alloc(0);
indio_dev->name = “adc123”;
indio_dev->channels = adc_channels;
indio_dev->num_channels = ARRAY_SIZE(adc_channels);
indio_dev->info = &adc_info;
indio_dev->dev.parent = dev;
indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;

iio_device_register(indio_dev);



  

IIO Userspace ABI

● Devices, channels and attributes are represented as sysfs 
directories and files
– sysfs is a virtual filesystem where read/write operations are mapped 

to kernel callbacks

● Buffers are represented as character devices
– Use read()/write() to access data



  

IIO Userspace ABI - Devices

# cd /sys/bus/iio/devices
# ls
iio:device0 iio:device1 iio:device2
#
# cd iio:device0
# ls
buffer/            in_voltage0_raw  in_voltage5_raw   power
dev                in_voltage1_raw  in_voltage6_raw   scan_elements/
in_temp0_mean_raw  in_voltage2_raw  in_voltage7_raw   subsystem
in_temp0_raw       in_voltage3_raw  in_voltage_scale  uevent
in_temp0_scale     in_voltage4_raw  name
# cat in_temp0_raw
2013
# cat in_temp0_scale
12.5



  

IIO Userspace ABI - Buffers

# cd /sys/bus/iio/devices/iio:device1/scan_elements
# ls
in_voltage0_en in_voltage0_index in_voltage0_type ...
# cat in_voltage0_type
be:u12/16>>0
# cd /sys/bus/iio/devices/iio:device1/buffer
# ls
enable length
# cd /sys/bus/iio/devices/iio:device1/
# echo 1 > scan_elements/in_voltage0_en
# echo 1024 > buffer/length
# echo 1 > buffer/enable
# cat /dev/iio:device0 | …
# echo 0 > buffer/length



  

IIO Userspace ABI – Writing Applications

● Looks all nice and good...
● … until you try to use it in an application

– Involves a lot of string parsing and formating

– Structured data from the kernel driver has been flattened

● String parsing is not easy and error prone (especially in a 
language like C)

● Applications require lot of boilerplate code



  

libiio Design Goals



  

libiio Design Goals

● Hide low level details of communicating with the kernel driver
– Take care of all boilerplate code

● Provide proper data structures and functions
– Reconstruct kernel driver data structures

● Support for (remote) backends
– Allow applications to access the devices when running on a remote 

machine (e.g. laptop connected to embedded board)



  

libiio Design Goals

● Support for (remote) backends
– Allow applications to access the devices when running on a remote 

machine (e.g. laptop connected to embedded board)

– Have a system daemon that serializes and multiplexes access to the 
same device for multiple application



  

About libiio



  

About libiio

● Development started: Beginning of 2014
● First stable release: August of 2014
● Two stable releases per year
● Maintainer and lead developer: Paul Cercueil
● Written in the C programming language
● Stable ABI guarantee
● Under active development

– Patches welcome



  

Using libiio



  

Context

● libiio itself has zero global state
● All state is contained in a context

– Multiple contexts can be instantiated

● Context can be local or remote
– iio_create_local_context(void)

– iio_create_network_context(const char *host)

– iio_create_default_context(void)

● Looks up the target context from the IIOD_REMOTE environment variable
– iio_context_destroy() to free context state 



  

Devices

● struct iio_device maps to a device registered by the kernel

● iio_context_get_devices_count(struct iio_context *) 
iio_context_get_device(struct iio_context *, unsigned int index)

– Enumerate all available devices of a context
● iio_context_find_device(struct iio_context *, const char *name)

– Lookup device by ID (iio:deviceX) or name



  

Channels

● struct iio_channel maps to a channel of a device

● iio_device_get_channels_count(struct iio_device *) 
iio_device_get_channel(struct iio_device *, unsigned int index)

– Enumerate all available channels of a device
● iio_device_find_channel(sturct iio_device *, const char *name, 

bool output)

– Lookup channel of a device by ID (e.g. voltage0) or name

– Input and output channels can have overlapping IDs



  

Attributes

● const char * used to represent attribute names

● iio_device_get_attrs_count(struct iio_device *)

iio_device_get_attr(struct iio_device *, unsigned int index)

iio_channel_get_attrs_count(struct iio_channel *)

iio_channel_get_attr(struct iio_channel *, unsigned int index)

– Enumerate available attributes



  

Attributes

● iio_device_find_attr(const char *name)

iio_channel_find_attr(const char *name)

– Lookup attribute by name

– Can be used to check if attribute exist

– Returned string is valid as long as context is valid



  

Attributes

● iio_{device,channel}_attr_read(struct iio_{device,channel} *, const char 
*attr, char *dst, size_t len)

iio_{device,channel}_attr_read_bool(struct iio_{device,channel} *, const 
char *attr, bool *val)

iio_{device,channel}_attr_read_double(struct iio_{device,channel} *, const 
char *attr, double *val)

iio_{device,channel}_attr_read_longlong(struct iio_{device,channel} *, 
const char *attr, long long *val)

– Get the value of a attribute

– String value converted to the target data type



  

Attributes

● iio_{device,channel}_attr_write(struct iio_{device,channel} *, const char 
*attr, const char *src)

iio_{device,channel}_attr_write_bool(struct iio_{device,channel} *, const 
char *attr, bool val)

iio_{device,channel}_attr_write_double(struct iio_{device,channel} *, const 
char *attr, double val)

iio_{device,channel}_attr_write_longlong(struct iio_{device,channel} *, 
const char *attr, long long val)

– Set the value of a attribute

– Source data type converted to string value



  

Buffers

● iio_channel_enable(struct iio_channel *)

iio_channel_disable(struct iio_channel *)

– Enable/Disable channel for buffered capture

● struct iio_buffer * represents a active buffer

● iio_device_create_buffer(struct iio_device *, size_t size, bool cyclic)

– Configures and enables buffer
● iio_buffer_destory(struct iio_buffer *)

– Disables buffer and frees data structure



  

Buffers

● iio_buffer_refill(struct iio_buffer *)

– Fetches samples from the kernel buffer

● iio_buffer_start(struct iio_buffer *)

– Returns the address of the userspace buffer

– Might change after iio_buffer_refill()
● iio_buffer_step(struct iio_buffer *)

– Spacing between sample sets in the buffer
● iio_buffer_first(struct iio_buffer *, struct iio_channel *)

– Returns the address of the first sample for a channel



  

Example

struct iio_context *ctx;
struct iio_device *dev;
struct iio_channel *ch;

/* Error handling is missing */
ctx = iio_create_default_context();
dev = iio_context_get_device(ctx, 0);
ch = iio_device_get_channel(dev, 0);

iio_device_attr_write_longlong(dev, “sample_rate”, 1000);
iio_channel_attr_write_double(ch, “scale”, 0.525);



  

Example – Data Capture

uint16_t *data;
struct iio_buffer *buf;

iio_channel_enable(chn);
buf = iio_device_create_buffer(dev, 1000, false);
iio_buffer_refill(buf);
for (data = iio_buffer_first(buf, ch);
      data < iio_buffer_end(buf);
      data += iio_buffer_step(buf))
          printf(“%u\n”, *data);

iio_buffer_destroy(buf);
iio_channel_disable(chn);



  

Bindings



  

Bindings

● Bindings are available for multiple 
programming languages
– Python, C#, Matlab, C++ (experimental)

● Cross-platform
– Linux (native and remote backends)

– Windows, MacOS X, BSDs (remote 
backends)

#!/usr/bin/env python

import iio

ctx = iio.Context()

for dev in ctx.devices:
print dev.name

#!/usr/bin/env python

import iio

ctx = iio.Context()

for dev in ctx.devices:
print dev.name



  

iiod



  

iiod 

● System service
● Multiplexing between multiple readers/writers
● Support for remote clients (via TCP/IP and USB)
● Applications do not need system level privileges
● Transparent from the applications point of view
● Allows client state tracking



  

iiod and libiio



  

Tools



  

iio_info

● List information about all 
available device

● Prints snapshot of all 
devices and all their 
channels and attributes

# iio_info
Library version: 0.6 (git tag: 284b224)
IIO context created with local backend.
Backend version: 0.6 (git tag: 284b224)
Backend description string: Linux analog 3.19.0-
gf733099 #1 SMP PREEMPT Mon Nov 2 11:05:07 
EET 2015 armv7l
IIO context has 5 devices:
        iio:device0: ad7291
                9 channels found:
                        temp0:  (input)
                        3 channel-specific attributes found:
                                attr 0: scale value: 250
                                attr 1: mean_raw value: 110
                                attr 2: raw value: 109
                        voltage0:  (input)
                        2 channel-specific attributes found:
                                attr 0: raw value: 2512
                                attr 1: scale value: 0.610351562



  

iio_readdev

● Allows to capture continuous data from a device

# iio_readdev --buffer-size 100000 iio:device4 voltage0 | pv > /dev/null 
 584MB 0:00:10 [58.6MB/s]



  

iio_monitor

● Digital multimeter type 
application

● ncurses based interface
● Useful for having a look at 

“live” data



  

IIO Scope

● Capture and display data
– Time domain

– Frequency domain

– Constellation plot

– Markers

– Math operations

● Device configuration
● Plug-in system allow to create 

device or complex specialized GUI



  

IIO Scope



  

Future



  

Future Developments – Short Term

● USB remote backend support
– Implemented as a gadget driver using function fs

– Allows embedded data aggregation devices to directly connect to 
PC/laptop

● Support for backend enumeration
– Applications can offer a list of available backends to user

– Reference backends by URI (e.g. usb://3-25, local://)
● New iio_create_context_from_uri() function



  

Future Developments – Long Term

● Hotplug support
– So far most platforms with IIO devices have a static setup

– DeviceTree overlays allow dynamic insertion/removal

– IIO recently gained support for user insatiable triggers

● Make remote backend support independent of IIO
– Allows support for other data sources (e.g. hwmon, storage)

– Allows to implement application logic on the target side, but outside 
of kernel space



  

Q/A



  

Thanks



  

Further Information

● Source
– https://github.com/analogdevicesinc/libiio

● API reference
– http://analogdevicesinc.github.io/libiio/

● Design document
– https://wiki.analog.com/resources/tools-software/linux-software/libiio_internals

https://github.com/analogdevicesinc/libiio
http://analogdevicesinc.github.io/libiio/
https://wiki.analog.com/resources/tools-software/linux-software/libiio_internals


  

Bonus Slides



  

IIO Architecture Diagram



  

3rd  Party Tools
Integration



  

GNURadio

● Signal-processing development 
environment

● Many diverse pre-built processing 
blocks available

● Processing pipelines are 
assembled from blocks in flow 
graphs

● GnuRadio IIO Sink and Source 
blocks are available through the 
gr-iio package



  

sigrok (WIP)

● Portable, cross-platform, Open-Source 
signal analysis software (logic analyzers, 
scopes, multimeters, and more)
– Protocol decoders I2C, SPI, UART ...

● Generic IIO sigrok driver allows to capture 
data from any device

● Specialized drivers allow to provide better 
configuration mapping between IIO and 
sigrok



  

Matlab/Simulink

● IIO System Object

– Based on MATLAB System 
Objects

– Available in both Matlab and 
Simulink

– Data is streamed over a remote 
backend into the simulation

– Control settings

● Enables hardware in the loop 
simulation


