

libiio
Lars-Peter Clausen, Analog Devices

Agenda

1) Short introduction to IIO

2) Motivation for libiio

3) Using libiio

4) Infrastructure built with and around libiio

5) Future outlook

Short Introduction
to IIO

Introduction to IIO

● Industrial Input/Output framework
– Not really just for Industrial IO

– All non-HID IO

– ADC, DAC, light, accelerometer, gyro, magnetometer, humidity, temperature, rotation,
angular momentum, lifestyle sensors ...

● Developed by Jonathan Cameron
● In the kernel since v2.6.32 (2009)
● Moved out of staging/ in v3.5 (2012)
● ~220 IIO device drivers (v4.6)

– Many drivers support multiple devices

IIO Structure

● Device represents logical
functional unit
– Typically a piece of physical

hardware

● Attributes
– Describe hardware

capabilities

– Allow to change hardware
configuration

IIO Structure

● Channels represent data
channels
– Channels have a type and

direction

– E.g. ADC has voltage
channels

– Channels can have attributes

● Buffers are used for
continuous data capture

IIO Kernelspace API

static const struct iio_chan_spec adc_channels[] = {
 {
 .type = IIO_VOLTAGE,
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),
 .indexed = 1,
 .channel = 0,
 .scan_index = 0,
 },
 ...
 {
 .type = IIO_TEMP,
 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
 BIT(IIO_CHAN_INFO_AVERAGE_RAW) |
 BIT(IIO_CHAN_INFO_SCALE),
 .indexed = 1,
 .channel = 0,
 .scan_index = 8,
 }
};

IIO Kernelspace API

static const struct iio_info adc_info = {
 .read_raw = &adc_read_raw,
 .write_raw = &adc_write_raw,
 .driver_module = THIS_MODULE,
};

struct iio_dev *indio_dev;

indio_dev = iio_device_alloc(0);
indio_dev->name = “adc123”;
indio_dev->channels = adc_channels;
indio_dev->num_channels = ARRAY_SIZE(adc_channels);
indio_dev->info = &adc_info;
indio_dev->dev.parent = dev;
indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;

iio_device_register(indio_dev);

IIO Userspace ABI

● Devices, channels and attributes are represented as sysfs
directories and files
– sysfs is a virtual filesystem where read/write operations are mapped

to kernel callbacks

● Buffers are represented as character devices
– Use read()/write() to access data

IIO Userspace ABI - Devices

cd /sys/bus/iio/devices
ls
iio:device0 iio:device1 iio:device2
#
cd iio:device0
ls
buffer/ in_voltage0_raw in_voltage5_raw power
dev in_voltage1_raw in_voltage6_raw scan_elements/
in_temp0_mean_raw in_voltage2_raw in_voltage7_raw subsystem
in_temp0_raw in_voltage3_raw in_voltage_scale uevent
in_temp0_scale in_voltage4_raw name
cat in_temp0_raw
2013
cat in_temp0_scale
12.5

IIO Userspace ABI - Buffers

cd /sys/bus/iio/devices/iio:device1/scan_elements
ls
in_voltage0_en in_voltage0_index in_voltage0_type ...
cat in_voltage0_type
be:u12/16>>0
cd /sys/bus/iio/devices/iio:device1/buffer
ls
enable length
cd /sys/bus/iio/devices/iio:device1/
echo 1 > scan_elements/in_voltage0_en
echo 1024 > buffer/length
echo 1 > buffer/enable
cat /dev/iio:device0 | …
echo 0 > buffer/length

IIO Userspace ABI – Writing Applications

● Looks all nice and good...
● … until you try to use it in an application

– Involves a lot of string parsing and formating

– Structured data from the kernel driver has been flattened

● String parsing is not easy and error prone (especially in a
language like C)

● Applications require lot of boilerplate code

libiio Design Goals

libiio Design Goals

● Hide low level details of communicating with the kernel driver
– Take care of all boilerplate code

● Provide proper data structures and functions
– Reconstruct kernel driver data structures

● Support for (remote) backends
– Allow applications to access the devices when running on a remote

machine (e.g. laptop connected to embedded board)

libiio Design Goals

● Support for (remote) backends
– Allow applications to access the devices when running on a remote

machine (e.g. laptop connected to embedded board)

– Have a system daemon that serializes and multiplexes access to the
same device for multiple application

About libiio

About libiio

● Development started: Beginning of 2014
● First stable release: August of 2014
● Two stable releases per year
● Maintainer and lead developer: Paul Cercueil
● Written in the C programming language
● Stable ABI guarantee
● Under active development

– Patches welcome

Using libiio

Context

● libiio itself has zero global state
● All state is contained in a context

– Multiple contexts can be instantiated

● Context can be local or remote
– iio_create_local_context(void)

– iio_create_network_context(const char *host)

– iio_create_default_context(void)

● Looks up the target context from the IIOD_REMOTE environment variable
– iio_context_destroy() to free context state

Devices

● struct iio_device maps to a device registered by the kernel

● iio_context_get_devices_count(struct iio_context *)
iio_context_get_device(struct iio_context *, unsigned int index)

– Enumerate all available devices of a context
● iio_context_find_device(struct iio_context *, const char *name)

– Lookup device by ID (iio:deviceX) or name

Channels

● struct iio_channel maps to a channel of a device

● iio_device_get_channels_count(struct iio_device *)
iio_device_get_channel(struct iio_device *, unsigned int index)

– Enumerate all available channels of a device
● iio_device_find_channel(sturct iio_device *, const char *name,

bool output)

– Lookup channel of a device by ID (e.g. voltage0) or name

– Input and output channels can have overlapping IDs

Attributes

● const char * used to represent attribute names

● iio_device_get_attrs_count(struct iio_device *)

iio_device_get_attr(struct iio_device *, unsigned int index)

iio_channel_get_attrs_count(struct iio_channel *)

iio_channel_get_attr(struct iio_channel *, unsigned int index)

– Enumerate available attributes

Attributes

● iio_device_find_attr(const char *name)

iio_channel_find_attr(const char *name)

– Lookup attribute by name

– Can be used to check if attribute exist

– Returned string is valid as long as context is valid

Attributes

● iio_{device,channel}_attr_read(struct iio_{device,channel} *, const char
*attr, char *dst, size_t len)

iio_{device,channel}_attr_read_bool(struct iio_{device,channel} *, const
char *attr, bool *val)

iio_{device,channel}_attr_read_double(struct iio_{device,channel} *, const
char *attr, double *val)

iio_{device,channel}_attr_read_longlong(struct iio_{device,channel} *,
const char *attr, long long *val)

– Get the value of a attribute

– String value converted to the target data type

Attributes

● iio_{device,channel}_attr_write(struct iio_{device,channel} *, const char
*attr, const char *src)

iio_{device,channel}_attr_write_bool(struct iio_{device,channel} *, const
char *attr, bool val)

iio_{device,channel}_attr_write_double(struct iio_{device,channel} *, const
char *attr, double val)

iio_{device,channel}_attr_write_longlong(struct iio_{device,channel} *,
const char *attr, long long val)

– Set the value of a attribute

– Source data type converted to string value

Buffers

● iio_channel_enable(struct iio_channel *)

iio_channel_disable(struct iio_channel *)

– Enable/Disable channel for buffered capture

● struct iio_buffer * represents a active buffer

● iio_device_create_buffer(struct iio_device *, size_t size, bool cyclic)

– Configures and enables buffer
● iio_buffer_destory(struct iio_buffer *)

– Disables buffer and frees data structure

Buffers

● iio_buffer_refill(struct iio_buffer *)

– Fetches samples from the kernel buffer

● iio_buffer_start(struct iio_buffer *)

– Returns the address of the userspace buffer

– Might change after iio_buffer_refill()
● iio_buffer_step(struct iio_buffer *)

– Spacing between sample sets in the buffer
● iio_buffer_first(struct iio_buffer *, struct iio_channel *)

– Returns the address of the first sample for a channel

Example

struct iio_context *ctx;
struct iio_device *dev;
struct iio_channel *ch;

/* Error handling is missing */
ctx = iio_create_default_context();
dev = iio_context_get_device(ctx, 0);
ch = iio_device_get_channel(dev, 0);

iio_device_attr_write_longlong(dev, “sample_rate”, 1000);
iio_channel_attr_write_double(ch, “scale”, 0.525);

Example – Data Capture

uint16_t *data;
struct iio_buffer *buf;

iio_channel_enable(chn);
buf = iio_device_create_buffer(dev, 1000, false);
iio_buffer_refill(buf);
for (data = iio_buffer_first(buf, ch);
 data < iio_buffer_end(buf);
 data += iio_buffer_step(buf))
 printf(“%u\n”, *data);

iio_buffer_destroy(buf);
iio_channel_disable(chn);

Bindings

Bindings

● Bindings are available for multiple
programming languages
– Python, C#, Matlab, C++ (experimental)

● Cross-platform
– Linux (native and remote backends)

– Windows, MacOS X, BSDs (remote
backends)

#!/usr/bin/env python

import iio

ctx = iio.Context()

for dev in ctx.devices:
print dev.name

#!/usr/bin/env python

import iio

ctx = iio.Context()

for dev in ctx.devices:
print dev.name

iiod

iiod

● System service
● Multiplexing between multiple readers/writers
● Support for remote clients (via TCP/IP and USB)
● Applications do not need system level privileges
● Transparent from the applications point of view
● Allows client state tracking

iiod and libiio

Tools

iio_info

● List information about all
available device

● Prints snapshot of all
devices and all their
channels and attributes

iio_info
Library version: 0.6 (git tag: 284b224)
IIO context created with local backend.
Backend version: 0.6 (git tag: 284b224)
Backend description string: Linux analog 3.19.0-
gf733099 #1 SMP PREEMPT Mon Nov 2 11:05:07
EET 2015 armv7l
IIO context has 5 devices:
 iio:device0: ad7291
 9 channels found:
 temp0: (input)
 3 channel-specific attributes found:
 attr 0: scale value: 250
 attr 1: mean_raw value: 110
 attr 2: raw value: 109
 voltage0: (input)
 2 channel-specific attributes found:
 attr 0: raw value: 2512
 attr 1: scale value: 0.610351562

iio_readdev

● Allows to capture continuous data from a device

iio_readdev --buffer-size 100000 iio:device4 voltage0 | pv > /dev/null
 584MB 0:00:10 [58.6MB/s]

iio_monitor

● Digital multimeter type
application

● ncurses based interface
● Useful for having a look at

“live” data

IIO Scope

● Capture and display data
– Time domain

– Frequency domain

– Constellation plot

– Markers

– Math operations

● Device configuration
● Plug-in system allow to create

device or complex specialized GUI

IIO Scope

Future

Future Developments – Short Term

● USB remote backend support
– Implemented as a gadget driver using function fs

– Allows embedded data aggregation devices to directly connect to
PC/laptop

● Support for backend enumeration
– Applications can offer a list of available backends to user

– Reference backends by URI (e.g. usb://3-25, local://)
● New iio_create_context_from_uri() function

Future Developments – Long Term

● Hotplug support
– So far most platforms with IIO devices have a static setup

– DeviceTree overlays allow dynamic insertion/removal

– IIO recently gained support for user insatiable triggers

● Make remote backend support independent of IIO
– Allows support for other data sources (e.g. hwmon, storage)

– Allows to implement application logic on the target side, but outside
of kernel space

Q/A

Thanks

Further Information

● Source
– https://github.com/analogdevicesinc/libiio

● API reference
– http://analogdevicesinc.github.io/libiio/

● Design document
– https://wiki.analog.com/resources/tools-software/linux-software/libiio_internals

https://github.com/analogdevicesinc/libiio
http://analogdevicesinc.github.io/libiio/
https://wiki.analog.com/resources/tools-software/linux-software/libiio_internals

Bonus Slides

IIO Architecture Diagram

3rd Party Tools
Integration

GNURadio

● Signal-processing development
environment

● Many diverse pre-built processing
blocks available

● Processing pipelines are
assembled from blocks in flow
graphs

● GnuRadio IIO Sink and Source
blocks are available through the
gr-iio package

sigrok (WIP)

● Portable, cross-platform, Open-Source
signal analysis software (logic analyzers,
scopes, multimeters, and more)
– Protocol decoders I2C, SPI, UART ...

● Generic IIO sigrok driver allows to capture
data from any device

● Specialized drivers allow to provide better
configuration mapping between IIO and
sigrok

Matlab/Simulink

● IIO System Object

– Based on MATLAB System
Objects

– Available in both Matlab and
Simulink

– Data is streamed over a remote
backend into the simulation

– Control settings

● Enables hardware in the loop
simulation

