Enabling Zephyr on Your Hardware Platform

Diego Sueiro, Sepura / Embarcados

www.embarcados.com.br

OpenIoT Summit Europe 2018
Agenda

Hardware support implementation in Zephyr
Adding a new HAL
Adding a new SoC
Adding new drivers
Adding a new board
Debugging tips
Hardware support checklist
Contributing to mainline
Preamble

● Source code examples based on master branch 1ec4b68;

● Some sources were stripped to fit on the screen;

● All examples based on the support for Zephyr running on the ARM Cortex M4 core embedded in the i.MX7 processor;

● This presentation will not cover how to add a new CPU core architecture support. But a good documentation on how to achieve this can be find [here](#);

● Not all hardware aspects will be covered;
Agenda

Hardware support implementation in Zephyr

Adding a new HAL
Adding a new SoC
Adding new drivers
Adding a new board
Debugging tips
Hardware support checklist
Contributing to mainline
Hardware support implementation in Zephyr

Hardware Configuration Hierarchy (bottom to top):

- Board
- Drivers
- SoC
- SoC Series
- SoC Family
- CPU Core
- Architecture
- External HAL (optional)
Hardware support implementation in Zephyr

Hardware Configuration Hierarchy:

Architecture: arc, arm, nios2, posix, riscv32, x86 and xtensa

CPU Core:
- Implements: early boot sequence, interrupt and exception handling, thread context switching, thread creation and termination, CPU idling/power management, fault management, linker scripts and toolchains;
- Examples: ARCV2, CORTEX_M0, CORTEX_M0PLUS, CORTEX_M4, CORTEX_M7, CORTEX_M23, CORTEX_M33, NIOS2_GEN2, ATOM, MINUTEIA and APOLLO_LAKE.

SoC Family:
- Represents a single SoC type that can have more than one variations in terms of peripherals and features;
- Examples: KINETIS, IMX, SAM, SAM0, NRF, EXX32, LPC, TISIMPLELINK, STM32 and QUARK.

SoC Series:
- Represents the specific peripherals and features for the SoC family variations;
- Examples: KINETIS_K6X, KINETIS_KWX, KINETIS_KL2X, IMX_RT, IMX7_M4, IMX6_M4, NRF51X, NRF52X, EFM32WG, EFR32FG1P.
Hardware support implementation in Zephyr

Hardware Configuration Hierarchy (cont):

SoC:
- The actual SoC that is “soldered” in the hardware platform and its configuration;
- Examples: MKL25Z32VFM4, MCIMX7D5EVM10SC, SAMD20E14, EFM32WG990F256, LPC54114J256BD64.

Drivers:
- Include device model responsible for configuring and initialize drivers. Each driver follows a device model API and a specific driver type API;
- Examples: interrupt controller, timer, serial communications (UART, I2C etc) and random number generator.

Board:
- Includes a SoC and it’s associated peripherals and features including external components and devices;
- Examples: NRF51_BLENANO, NUCLEO_F103RB, COLIBRI_IMX7D_M4, 96B_CARBOTON, MIMXRT1050_EVK, HEXIWEAR_K64, QUARK_SE_C1000_BLE, CC2650_SENSORTAG, ADAFRUIT_TRINKET_M0 (more than 100 available).
Hardware support implementation in Zephyr

- Top level hardware configurations are defined via Kconfig and the final processing results located in the files:

 build/<board>/zephyr/.config
 build/<board>/zephyr/include/generated/autoconf.h

- Low level hardware specific configurations are defined via device tree and the final processing results located in the files:

 build/<board>/zephyr/include/generated/generated_dts_board.conf
 build/<board>/zephyr/include/generated/generated_dts_board.h
Agenda

Hardware support implementation in Zephyr

Adding a new HAL
Adding a new SoC
Adding new drivers
Adding a new board
Debugging tips
Hardware support checklist
Contributing to mainline

Architecture
CPU Core
SoC Family
SoC Series
SoC
Drivers
Board

External HAL (optional)
Adding a new HAL

- Added to support SoC, board and drivers implementations;
- Low level libraries mostly implemented by the SoC vendor to interface and configure the hardware;
- Different types of HAL, pros and cons covered at Maureen Helm’s presentation: Using SoC Vendor HALs in the Zephyr Project - [Video](#), [slides](#);
- Needs to be approved by the [Zephyr Technical Steering Committee](#) for non-Apache 2.0;
- Located at: `ext/hal/<vendor>/<lib_name>/`;
Adding a new HAL

- Just bug fixing modifications are allowed in these source/headers files;
- No standard coding style and directory structure;
- Almost all ARM devices follow the CMSIS standard headers for registers manipulation;
- Enabled with a config option, example: CONFIG_HAS_IMX_HAL;
- Has a set of Kconfig and CMakeLists.txt files to determine what to include and compile;
Adding a new HAL

Example: i.XM7 ARM Cortex M4 core from NXP FreeRTOS BSP locate at ext/hal/nxp/imx/ with the following structure:

```
.
  ├── CMakeLists.txt
  │    └── devices
  │        ├── MCIMX6X
  │        │        └── <...
  │        │             └── MCIMX7D
  │        │                    └── <...>.c
  │        │                    └── <...>.h
  │        │                    └── device_imx.h
  │        │                    └── MCIMX7D_M4.h
  │    └── drivers
  │           └── <...>.c
  │           └── <...>.h
  │           └── CMakeLists.txt
  └── Kconfig
      └── README
```
Adding a new HAL

Example: i.XM7 ARM Cortex M4 (cont)

ext/hal/nxp/imx/README:
IMX7D and MX6SX Port
#####################

Origin:
 <...>

Status:
 <...>

Purpose:
 <...>

Description:
 <...>

Follows the structure defined Contributing non-Apache 2.0 licensed components.
Adding a new HAL

Example: i.XM7 ARM Cortex M4 (cont)

```
ext/hal/nxp/imx/Kconfig:
    config HAS_IMX_HAL
        bool
        select HAS_CMSIS
        depends on SOC_FAMILY_IMX

    if HAS_IMX_HAL

        config HAS_IMX_RDC
            bool
            help
            Set if the RDC module is present in the SoC.

        config HAS_IMX_CCM
            bool
            help
            Set if the CCM module is present in the SoC.

    endif # HAS_IMX_HAL
```

```
ext/hal/nxp/imx/Kconfig (cont):
    config HAS_IMX_GPIO
        bool
        help
        Set if the GPIO module is present in the SoC.

    config HAS_IMX_I2C
        bool
        help
        Set if the I2C module is present in the SoC.

    endif # HAS_IMX_HAL
```
Adding a new HAL

Example: i.XM7 ARM Cortex M4 (cont)

ext/hal/nxp/imx/CMakelists.txt:

- Translate the SoC name and part number into the imx device and cpu name respectively.
 - string(TOUPPER ${CONFIG_SOC} IMX_DEVICE)

 zephyr_include_directories(devices/${IMX_DEVICE})

 # Build imx drivers and utilities that can be used for multiple SoC's.
 add_subdirectory(drivers)
 add_subdirectory(devices/${IMX_DEVICE})
Adding a new HAL

Example: Toradex Colibri iMX7 Dual
HAL related generated configs

build/colibri_imx7d_m4/zephyr/.config:

 CONFIG_HAS_IMX_HAL=y
 CONFIG_HAS_IMX_GPIO=y
 CONFIG_HAS_IMX_I2C=y
Agenda

Hardware support implementation in Zephyr

Adding a new HAL

Adding a new SoC

Adding new drivers

Adding a new board

Debugging tips

Hardware support checklist

Contributing to mainline

Architecture

CPU Core

SoC Family

SoC Series

SoC

Drivers

Board

External HAL (optional)
Adding a new SoC

- Defines the **SOC_FAMILY**, **SOC_SERIES**, **SOC** and **SOC_PART_NUMBER** configs;

- Located at: `soc/<architecture>/<soc_family>/<soc_series>/`;

- SoC initialization like clocks, memories, cache, chip erratas, watchdog etc in a **soc.c** file;

- Called in the system initialization process with the level **PRE_KERNEL_1** and priority **0**;

- Provides a **soc.h** header which will be often included by the board and drivers sources;

- Can extend functionalities not provided by the vendor HAL;

- Contains a set of Kconfig files, linker definitions, and device tree fixups.
Adding a new SoC

- Default Architecture, **SOC_FAMILY**, **SOC_SERIES** configs are selected in `boards/<architecture>/<board_name>/<board_name>_defconfig`. Example: Toradex Colibri iMX7 Dual

  ```
  boards/arm/colibri_imx7d_m4/colibri_imx7d_m4_defconfig:
  CONFIG_ARM=y
  CONFIG_SOC_FAMILY_IMX=y
  CONFIG_SOC_SERIES_IMX7_M4=y
  
  
  ```

- These default configs will dictate what Kconfigs will be sourced and which **CONFIG_** entries will be selected and generated for the SoC presented on the hardware platform;

- Has a dtsi defining peripherals and features properties presented in the SoC and is located at `dts/<architecture>/<vendor>/<vendor>_<soc_name>.dtsi`;

- May have a `dts.fixup` file that contain mappings from existing Kconfig options to the actual underlying DTS derived configuration `#defines`.
Adding a new SoC

dtsi defining peripherals and features properties presented in the SoC
Example: i.XM7 ARM Cortex M4 locate dtsi at dts/arm/nxp

dts/arm/nxp/nxp_imx7d_m4.dtsi:

```c
#include <arm/armv7-m.dtsi>
#include <dt-bindings/gpio/gpio.h>
#include <dt-bindings/i2c/i2c.h>
#include <dt-bindings/rdc/imx_rdc.h>

/ {
    cpus {
        #address-cells = <1>;
        #size-cells = <0>;

        cpu@0 {
            device_type = "cpu";
            compatible = "arm,cortex-m4";
            reg = <0>;
        }
    }
}
```

dts/arm/nxp/nxp_imx7d_m4.dtsi (cont):

```c
dsoc {
    <...>

tcml_code: code@1fff8000 {
    compatible = "nxp,imx-code-bus";
    reg = <0x1fff8000 0x8000>
    label = "TCML CODE";
};

tcmu_sys: memory@20000000 {
    device_type = "memory";
    compatible = "nxp,imx-sys-bus";
    reg = <0x20000000 0x8000>
    label = "TCMU SYSTEM";
};
<...>
```
Adding a new SoC

dtsi defining peripherals and features properties presented in the SoC
Example: i.XM7 ARM Cortex M4 locate dtsi at dts/arm/nxp/

dts/arm/nxp/nxp_imx7d_m4.dtsi (cont):

```dts
<...

gpio7: gpio@30260000 {
    compatible = "nxp,imx-gpio";
    reg = <0x30260000 0x10000>;
    interrupts = <76 0>, <77 0>;
    label = "GPIO_7";
    rdc = <((RDC_DOMAIN_PERM(A7_DOMAIN_ID, RDC_DOMAIN_PERM_RW)|
        RDC_DOMAIN_PERM(M4_DOMAIN_ID, RDC_DOMAIN_PERM_RW))|>
        RDC_DOMAIN_PERM(M4_DOMAIN_ID, RDC_DOMAIN_PERM_RW))>;
    gpio-controller;
    #gpio-cells = <2>;
    status = "disabled";
};
<...

&nvic {
    arm,num-irq-priority-bits = <4>;
};
```
Adding a new SoC

dts.fixup files contain mappings from existing Kconfig options to the actual underlying DTS derived configuration #defines.

Example: i.XM7 ARM Cortex M4

soc/arm/nxp_imx/mcimx7_m4/dts.fixup:

```c
<...>
#define CONFIG_NUM_IRQ_PRI_BITS ARM_V7M_NVIC_E000E100_ARM_NUM_IRQ_PRIORITY_BITS
<...>
#define CONFIG_GPIO_IMX_PORT_7_NAME NXP_IMX_GPIO_30260000_LABEL
#define CONFIG_GPIO_IMX_PORT_7_BASE_ADDRESS NXP_IMX_GPIO_30260000_BASE_ADDRESS
#define CONFIG_GPIO_IMX_PORT_7_IRQ_0 NXP_IMX_GPIO_30260000_IRQ_0
#define CONFIG_GPIO_IMX_PORT_7_IRQ_0_PRI NXP_IMX_GPIO_30260000_IRQ_0_PRIORITY
#define CONFIG_GPIO_IMX_PORT_7_IRQ_1 NXP_IMX_GPIO_30260000_IRQ_1
#define CONFIG_GPIO_IMX_PORT_7_IRQ_1_PRI NXP_IMX_GPIO_30260000_IRQ_1_PRIORITY
<...>
#define CONFIG_UART_IMX_UART_2_NAME NXP_IMX_UART_30890000_LABEL
#define CONFIG_UART_IMX_UART_2_BASE_ADDRESS NXP_IMX_UART_30890000_BASE_ADDRESS
#define CONFIG_UART_IMX_UART_2_BAUD_RATE NXP_IMX_UART_30890000_CURRENT_SPEED
#define CONFIG_UART_IMX_UART_2_IRQ_NUM NXP_IMX_UART_30890000_IRQ_0
#define CONFIG_UART_IMX_UART_2_IRQ_PRI NXP_IMX_UART_30890000_IRQ_0_PRIORITY
#define CONFIG_UART_IMX_UART_2_MODEM_MODE NXP_IMX_UART_30890000_MODEM_MODE
<...>
```
Adding a new SoC

Example: i.XM7 ARM Cortex M4 SoC specific source code at
soc/arm/nxp_imx/mcimx7_m4/ with the following structure:

```
soc/arm/nxp_imx/
```

```
│   ├── CMakeLists.txt
│   ├── Kconfig
│   │   ├── Kconfig.defconfig
│   │   └── Kconfig.soc
│   └── mcimx7_m4
│       └── soc.h
```
Adding a new SoC

Kconfig processing order when `cmake -DBOARD=<BOARD_NAME> ../..` command is issued:

```
[00] $(BOARD_DIR)/<BOARD_NAME>_defconfig
[01] Kconfig -> [02]
[02] Kconfig.zephyr -> [03] | [04] | [05] | [08] | [11] | [17]
[03] $(BOARD_DIR)/Kconfig.defconfig
[04] boards/shields/*/Kconfig.defconfig
[05] $(SOC_DIR)/(ARCH)/*/Kconfig.defconfig -> [06]
[06] $(SOC_DIR)/(ARCH)/<SOC_FAMILY>/*Kconfig.defconfig.series -> [07]
[07] $(SOC_DIR)/(ARCH)/<SOC_FAMILY>/SOC_SERIES/Kconfig.defconfig.<SOC_SERIES>
[08] boards/Kconfig -> [09] | [10]
[09] $(BOARD_DIR)/Kconfig.board
[10] $(BOARD_DIR)/Kconfig
[12] $(SOC_DIR)/(ARCH)/*/Kconfig.soc -> [13]
[13] $(SOC_DIR)/(ARCH)/<SOC_FAMILY>/*Kconfig.series
[14] $(SOC_DIR)/(ARCH)/Kconfig
[15] $(SOC_DIR)/(ARCH)/*/Kconfig -> [16]
[16] $(SOC_DIR)/(ARCH)/<SOC_FAMILY>/*Kconfig.soc
[17] arch/Kconfig
```
Adding a new SoC

Kconfig processing order (cont)
Example: Toradex Colibri iMX7 Dual (cmake -DBOARD=colibri_imx7d_m4 ../..)

00) boards/arm/colibri_imx7d_m4/colibri_imx7d_m4_defconfig
01) Kconfig -> 02)
02) Kconfig.zephyr -> 03) | 04) | 05) | 08) | 11)
03) boards/arm/colibri_imx7d_m4/Kconfig.defconfig
04) boards/shields/*/Kconfig.defconfig
05) soc/arm/nxp_imx/Kconfig.defconfig -> 06)
06) soc/arm/nxp_imx/mcimx7_m4/Kconfig.defconfig.series -> 07)
07) soc/arm/nxp_imx/mcimx7_m4/Kconfig.defconfig.mcimx7_m4
08) boards/Kconfig -> 09) | 10)
09) boards/arm/colibri_imx7d_m4/Kconfig.board
10) boards/arm/colibri_imx7d_m4/Kconfig
11) soc/Kconfig -> 12) | 14) | 15)
12) soc/arm/nxp_imx/Kconfig.soc -> 13)
13) soc/arm/nxp_imx/mcimx7_m4/Kconfig.series
14) soc/arm/Kconfig
15) soc/arm/nxp_imx/Kconfig -> 16)
16) soc/arm/nxp_imx/mcimx7_m4/Kconfig.soc
Adding a new SoC

SoC specific Kconfig files
Example: i.XM7 ARM Cortex M4

[00] boards/arm/colibri_imx7d_m4/colibri_imx7d_m4_defconfig
[01] Kconfig -> [02]
[02] Kconfig.zephyr -> [03] | [04] | [05] | [08] | [11]
[03] boards/arm/colibri_imx7d_m4/Kconfig.defconfig
[04] boards/shields/*/Kconfig.defconfig
[05] soc/arm/nxp_imx/Kconfig.defconfig -> [06]
[06] soc/arm/nxp_imx/mcimx7_m4/Kconfig.defconfig.series -> [07]
[07] soc/arm/nxp_imx/mcimx7_m4/Kconfig.defconfig.mcimx7_m4
[08] boards/Kconfig -> [09] | [10]
[09] boards/arm/colibri_imx7d_m4/Kconfig.board
[10] boards/arm/colibri_imx7d_m4/Kconfig
[14] soc/arm/Kconfig
[16] soc/arm/nxp_imx/mcimx7_m4/Kconfig.soc
Adding a new SoC

Example: Toradex Colibri iMX7 Dual
SoC related generated configs

samples/subsys/shell/shell_module/build/colibri_imx7d_m4/zephyr/.config:

```
...  
 CONFIG_SOC="mcimx7d"
 CONFIG_SOC_SERIES="mcimx7_m4"
 CONFIG_NUM_IRQS=127
 CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC=200000000
 CONFIG_SOC_PART_NUMBER="MCIMX7D5EVM10SC"
 ...
 CONFIG_CLOCK_CONTROL_IMX_CCM=y
 CONFIG_GPIO_IMX=y
 CONFIG_UART_IMX=y
 CONFIG_SYS_CLOCK_TICKS_PER_SEC=1000
 ...
 CONFIG_SOC_SERIES_IMX7_M4=y
 CONFIG_SOC_FAMILY="nxp_imx"
 CONFIG_SOC_FAMILY_IMX=y
 CONFIG_SOC_MCIMX7_M4=y
 CONFIG_SOC_PART_NUMBER_MCIMX7D5EVM10SC=y
 CONFIG_SOC_PART_NUMBER_IMX7_M4="MCIMX7D5EVM10SC"
```
Agenda

Hardware support implementation in Zephyr

Adding a new HAL

Adding a new SoC

Adding new drivers

Adding a new board

Debugging tips

Hardware support checklist

Contributing to mainline

Architecture

CPU Core

SoC Family

SoC Series

SoC

Drivers

Board

External HAL (optional)
Adding a new Driver

- Provides interface to the hardware;
- Located at `drivers/<driver_type>/`;
- Must implement the API exposed in `include/<driver_type>.h`;
- One driver multiple instances;
- Selection and configuration done via Kconfigs and device tree;
- May use the vendor HAL (shim drivers);
- Initialization performed during the kernel boot.
Adding a new Driver

- Yaml file to describe the device tree nodes and properties;
- Device tree file to define driver properties and configurations;
- Good ramp up [documentation](#) available;
- Unfortunately we don’t have time to cover this topic in this presentation :-(

Agenda

Hardware support implementation in Zephyr

Adding a new HAL

Adding a new SoC

Adding new drivers

Adding a new board

Debugging tips

Hardware support checklist

Contributing to mainline

Diagram:
- Architecture
- CPU Core
- SoC Family
- SoC Series
- SoC
- Drivers
- Board
- External HAL (optional)
Adding a new Board

- Represents the application hardware platform;
- Located at `boards/<architecture>/<board_name>/`;
- Extends the SoC and enable/disable its peripherals and functions and instantiate external devices via device tree (`<board_name>.dts`) and Kconfigs;
- Applies the pin muxing configuration;
- Contains a `board.h` to be used by the drivers and applications;
- Contains a `<board_name>_defconfig` file to select which SoC and basic features and interfaces included;
Adding a new Board

- May set flash partitions layout in the `<board_name>.dts` file;

- May include a `dts.fixup` file which contain mappings from existing Kconfig options to the actual underlying DTS derived configuration `#defines`;

- May include other source files to configure specific hardware and board features;

- May provide a `board.cmake` to instruct how to flash/debug;

- Includes a `<board_name>.yaml` file to list the board properties: e.g. flash and ram sizes and toolchain used, etc;

- Must have documentation listing the supported features, interfaces etc.
Adding a new Board

Source code located at `boards/<architecture>/<board_name>/`
Example: Toradex Colibri iMX7 Dual

`boards/arm/colibri_imx7d_m4/`:

```
├── board.h
├── CMakeLists.txt
├── colibri_imx7d_m4_defconfig
├── colibri_imx7d_m4.dts
├── colibri_imx7d_m4.yaml
├── doc
│   ├── colibri_imx7d_m4.rst
│   └── colibri_imx7d.png
├── Kconfig.board
├── Kconfig.defconfig
└── pinmux.c
```
Adding a new Board

Includes a `<board_name>.yaml` file to list the board properties: e.g. flash and ram sizes and toolchain used, etc

Example: Toradex Colibri iMX7 Dual

```yaml
boards/arm/colibri_imx7d_m4/colibri_imx7d_m4.yaml:
  identifier: colibri_imx7d_m4
  name: TORADEX Colibri IMX7D
  type: mcu
  arch: arm
  ram: 32
  flash: 32
  toolchain:
    - zephyr
    - gnuarmemb
  testing:
    ignore_tags:
      - net
      - bluetooth
```
Adding a new Board

Device tree `boards/<architecture>/<board_name>/<board_name>.dts` extending the
SoC and setting external devices.
Example: Toradex Colibri iMX7 Dual

```c
boards/arm/colibri_imx7d_m4/colibri_imx7d_m4.dts:
  /dts-v1/;

  #include <nxp/nxp_imx7d_m4.dtsi>

  / {
    model = "TORADEX Colibri IMX7D board";
    compatible = "nxp,mcimx7d_m4";

    aliases {
      gpio-1 = &gpio1;
      gpio-2 = &gpio2;
      uart-2 = &uart2;
      led0 = &green_led;
      sw0 = &user_switch_1;
      i2c-4 = &i2c4;
      pwm-1 = &pwm1;
    }

  }

boards/arm/colibri_imx7d_m4/colibri_imx7d_m4.dts (cont):
  chosen {
    #if defined(CONFIG_XIP)
      zephyr,flash = &tcml_code;
    #endif
    zephyr,sram = &tcmu_sys;
    zephyr,console = &uart2;
  }

  leds {
    compatible = "gpio-leds";
    green_led: led@0 {
      gpios = <&gpio1 2 GPIO_INT_ACTIVE_LOW>;
      label = "User LED1";
    }
  }
```
Adding a new Board

Device tree boards/<architecture>/<board_name>/<board_name>.dts extending the SoC and setting external devices.
Example: Toradex Colibri iMX7 Dual

boards/arm/colibri_imx7d_m4/colibri_imx7d_m4.dts (cont):

gpio_keys {
 compatible = "gpio-keys";
 user_switch_1: sw@0 {
 gpios = <&gpio2 26
 GPIO_INT_ACTIVE_LOW>;
 label = "User SW1";
 }
};

&uart2 {
 status = "ok";
 current-speed = <115200>;
 modem-mode = <64>;
};

boards/arm/colibri_imx7d_m4/colibri_imx7d_m4.dts (cont):

&gpio1 {
 status = "ok";
};

&gpio2 {
 status = "ok";
};

&i2c4 {
 status = "ok";
};

&pwm1 {
 status = "ok";
};
Adding a new Board

boards/<architecture>/<board_name>/Kconfig.board file that basically defines the board config, list SOC_SERIES dependency and selects the SOC_PART_NUMBER

Example: Toradex Colibri iMX7 Dual

boards/arm/colibri_imx7d_m4/Kconfig.board:
 config BOARD_COLIBRI_IMX7D_M4
 bool "Toradex Colibri iMX7 Dual"
 depends on SOC_SERIES_IMX7_M4
 select SOC_PART_NUMBER_MCIMX7D5EVM10SC
Adding a new Board

boards/<architecture>/<board_name>/Kconfig.defconfig file with invisible symbols that selects hardware interfaces and features and sets its default values.

Example: Toradex Colibri iMX7 Dual

boards/arm/colibri_imx7d_m4/Kconfig.defconfig:

 if BOARD_COLIBRI_IMX7D_M4
 config BOARD
 default "colibri_imx7d_m4"

 if GPIO_IMX
 config GPIO_IMX_PORT_1
 def_bool y
 <..>
 endif # GPIO_IMX

 endif # BOARD_COLIBRI_IMX7D_M4

boards/arm/colibri_imx7d_m4/Kconfig.defconfig (cont):

 if UART_IMX
 config UART_IMX_UART_2
 def_bool y
 endif # UART_IMX

 if I2C_IMX
 config I2C_4
 def_bool y
 endif # I2C_IMX

 if PWM_IMX
 config PWM_1
 def_bool y
 endif # PWM_IMX

 endif # BOARD_COLIBRI_IMX7D_M4
Adding a new Board

boards/<architecture>/<board_name>/<board_name>_defconfig file with visible symbols that selects the architecture, SoC aspects, board config, top level interfaces and features.

Example: Toradex Colibri iMX7 Dual

boards/arm/colibri_imx7d_m4/colibri_imx7d_m4_defconfig:
 CONFIG_ARM=y
 CONFIG_SOC_FAMILY_IMX=y
 CONFIG_SOC_SERIES_IMX7_M4=y
 CONFIG_SOC_MCIMX7_M4=y
 CONFIG_BOARD_COLIBRI_IMX7D_M4=y
 CONFIG_CORTEX_M_SYSTICK=y
 CONFIG_SERIAL_HAS_DRIVER=y
 CONFIG_UART_CONSOLE=y
 CONFIG_SERIAL=y
 CONFIG_CONSOLE=y
 CONFIG_CONSOLE_HAS_DRIVER=y
 CONFIG_XIP=y
Agenda

Hardware support implementation in Zephyr

Adding a new HAL

Adding a new SoC

Adding new drivers

Adding a new board

Debugging tips

Hardware support checklist

Contributing to mainline
Debugging tips

- Look at other source code reference (e.g. FreeRTOS) to understand what needs to be done to initialize the SoC;

- Try to print to UART (accessing the registers directly) in the SoC initialization to guarantee that the core is up and running;

- Implement the UART driver first, printk is life;

- Turn on the System Logging or Logger;

- Turn on asserts (CONFIG_ASSUME) to try to catch errors;

- Use a on-chip debugger (J-Link, ULINK etc).
Agenda

Hardware support implementation in Zephyr

Adding a new HAL

Adding a new SoC

Adding new drivers

Adding a new board

Debugging tips

Hardware support checklist

Contributing to mainline
Hardware support checklist

- For a new HAL:
 - Add a Kconfig and CMakeLists.txt files for build configuration and source codes includes and selection;
 - Import all the source code but only compile and include what is needed;

- For a new SoC, files to add:
 - `dts/<architecture>/<vendor>/<vendor>_<soc_name>.dti`
 - `soc/<architecture>/<soc_family>/<soc_series>/`
 - CMakeLists.txt
 - dts.fixup
 - Kconfig.defconfig.<soc_series>
 - Kconfig.defconfig.series
 - Kconfig.series
 - Kconfig.soc
 - linker.ld
 - soc.c
 - soc.h
Hardware support checklist

- For a new Board, files to add:
 - `boards/<architecture>/<board_name>/`
 - `board.h`
 - `CMakeLists.txt`
 - `<board_name>_defconfig`
 - `<board_name>.dts`
 - `<board_name>.yaml`
 - `doc`
 - `<board_name>.rst`
 - `Kconfig.board`
 - `Kconfig.defconfig`
 - `pinmux.c`
Agenda

Hardware support implementation in Zephyr

Adding a new HAL

Adding a new SoC

Adding new drivers

Adding a new board

Debugging tips

Hardware support checklist

Contributing to mainline
Contributing to mainline

- Follow the [coding style](#) (except for vendor HAL or source inside `/ext` directory);
- Follow the [commit guidelines](#);
- Follow the [documentation guidelines](#);
- Run the [sanitycheck](#) before pushing;
- There is a good example of [contribution workflow](#) when submitting patches for review;
Contributing to mainline

- When adding a new hardware platform split the PR in different patches:
 - ext/hal: for adding a new hal
 - drivers: for adding a new driver
 - soc: for adding a new SoC
 - boards: for adding a new board

- Be patient.
References

- Zephyr docs:
 - Architecture Porting Guide
 - Board Porting Guide
 - Device Tree in Zephyr
 - Application Development Primer

- Using SoC Vendor HALs in the Zephyr Project - Maureen Helm, NXP Semiconductors - Embedded Linux Conference Europe 2017 - Video, slides.
THANK YOU !!!!

Questions?

Diego Sueiro, Embarcados
www.embarcados.com.br
diego.sueiro@gmail.com
linkedin.com/in/diegosueiro/

OpenIoT Summit Europe 2018