
I2C, PWM and Hardware
Interfacing with the

Beagleboard
David Baty, Mark Jacobson and

Tom Most

Overview

Hardware Interfacing
Expansion Connector
Powering the Beagle
Level Shifting
I2C Devices

I2C
Enabling I2C2 on the Beagle
Basic access methods

PWM
Configuring the mux
Overview of registers and technique
Demonstration

Beagleboard Expansion Connector (J3)

Easy to access connector for breadboarding, etc
Contains a variety of signals

1.8v and 5v
I2C, UART, MMC, McBSP, GPIO
ALL I/O is 1.8v

Beagle can be powered solely with 5v pin
Desired signals must be muxed correctly to physical pins
Smaller expansion headers expose more signals

Harder to interface with
Typically used for LCD interface

Level Shifting

Level shifting will be required for most applications
MAX3378 -16Mbps Quad Bi-directional Level Shifter

Confirmed working
Used on several commercial expansion boards
Difficult to breadboard

PCA9306 - Level shifter for I2C
Single MOSFET Bi-Directional level shifter with BSS88 or
BSS138 (NXP Appnote AN97055)

Expansion Board Design

DXF available on wiki to align mounting holes and
expansion headers
Suggested Components

5v power supply (TPS5420 or other switcher)
5v I2C header
5v GPIO header
I/O Expander for switches and LEDs

See "BeagleBoard Hardware Interfacing" on eLinux wiki for
more information

Confirmed Functional I2C Devices

AD7991: 4 channel 12-bit ADC
Good default configuration
Auto sequencing

ADXL345: 3 axis accelerometer
Can used directly with 1.8V I2C with proper supply
Sparkfun sells a version for breadboards/prototypes

PCA8574AD: 8-bit IO Expander
Kernel module allows for transparent use
Can drive LEDs
3.3V and 5V

I2C Overview

Off-chip bus for communicating with low-speed peripherals
Common Applications: I/O expanders, Analog-to-digital
converters, Miscellaneous sensors
100kHz, 400kHz, 3.4Mhz modes available

Simple to use, requires only two pins
SCL - Clock
SDA - Data

Pull-up resistors used to idle the bus high
7-bit address and a read/write bit

Enabling I2C2 on the Beagleboard

Three I2C buses available, used to control a variety of on-
board peripherals, including the DVI display driver and
power sequencing
I2C2 pinned out to 0.1" spaced expansion header

Disabled by default due to lack of pull-up resistors
Can be enabled by recompiling the kernel with
"Beagleboard I2C2" selected in the configuration menu
Appears as /dev/i2c-2 when enabled

Communication with I2C Peripherals

Accomplished using standard syscalls
open - returns a file handle passed to the next three
ioctl
read - returns number of bytes actually read
write - returns number of bytes actually written

Errors can be checked via errno
See "Interfacing with I2C Devices" on eLinux wiki for more
details

Configuring the Beagleboard MUX

1. Pick pin to mux and what it needs to be set to (look in
BBSRM 8.19). Note the ball that the pin is connected to (e.
g. ball AB25 for expansion header pin 10).

2. Figure out the kernel name for that ball. Search for it in ...
/arch/arm/mach-omap2/mux34xx.c in the omap3_cbb_ball
array (this is the right package for the Beagle). For AB25,
this is GPT10_PWMEVT.

3. Add an entry for it in .../arch/arm/mach-omap2/board-
omap3beagle.c in the board_mux struct with the mode:

static struct omap_board_mux board_mux[] __initdata = {
 OMAP3_MUX(UART2_RTS, OMAP_MUX_MODE2|OMAP_PIN_OUTPUT),
 { .reg_offset = OMAP_MUX_TERMINATOR },
};

PWM Overview

OMAP3530 has 12 timers that can be used for PWM.
3 pinned out on the Beagle (exp. header 4, 6, and 10)

2 can be connected to the 13 MHz system clock (10 and
11, exp. header pins 10 and 6)
The rest use a 32 kHz clock

 Each timer is a bunch of 32-bit registers
TCLR Control register
TCRR Counter
TLDR Load register (fills TCRR when it overflows)
TMAR Compare value

To get PWM, set the timer to count endlessly. When it
equals TMAR or overflows, toggle the output.

PWM Continued

Frequency is (0xffffffff
- TLDR) *
clock_frequency
Duty cycle is (TMAR -
TLDR) / (0xffffffff -
TLDR)

PWM Demonstation

By using mmap() we can gain direct access to the timer
registers
This allows trivial control of hobby servomotors, which take
a 50 Hz PWM signal:

Duty cycle Effect
0.050 Full speed in one

direction
0.075 No movement
0.100 Full speed in opposite

direction

Questions?

Further Reading

http://elinux.org/Interfacing_with_I2C_Devices
http://elinux.org/BeagleBoard_Hardware_Interfacing
http://elinux.org/BeagleBoardPWM

