
ni.com

Conditional Variables for

Real-Time Applications

librtpi

Grațian Crișan

gratian.crisan@ni.com,
gratian@gmail.com

ni.com

About me

• I work for NI (formerly known as National Instruments)

• makes hardware & software for test, measurement, and automation

• Real-Time OS group for the past decade

• PREEMPT_RT based Linux kernels

• ARM and Intel x86_64 architectures

• distribution based on OpenEmbedded/Yocto

• Maintainer for the Linux kernel shipping on our RT hardware

• Often debug nasty RT issues (too often related to locking primitives)

ni.com

Agenda
Real-Time concepts

Conditional variables and monitors

Problems with conditional variable in libpthread

Librtpi (re)implementation of condvars

Future ideas and questions

ni.com

Any system that

interacts with the real,

physical world must

synchronize with it

Real-Time

Real World

ni.com

Deterministic response to stimulus

event action

latency

time

Events can be:

• Asynchronous

• Synchronous (clock driven)

We want the latency to be:

• Predictable

• Bounded

ni.com

Traditional Real-Time applications

Controller System

Controller System

Sensor

Desired
value

Output

Desired
value Output

Error

Feedback loop

ni.com

Real-Time applications today

Sensory processing

• sensor fusion

• complex filters

• image recognition

• classification

• estimation

Complex actuators

Behavior generation

• planners

• executors

• AI in the loop

• HIL in the loop

Complex sensors

Real World

World Model

ni.com

Data in Real-Time applications

Solving the bounded multiple producer/consumer problem with RT constraints

producer

producer

producer

producer

producer

consumer

consumer

consumer

consumer

consumer

… …

RT_FIFO:95

RT_FIFO:15

RT_FIFO:50

ni.com

How can a thread wait for a condition to be true?

• Spinning until condition becomes true

• very inefficient (wastes CPU cycles)

• can live-lock a CPU when used with RT threads

• Explicit queue

• threads can put themselves on when some state of execution is not
as desired (by waiting on the condition)

• some other thread, when it changes said state, can wake one or more
waiting threads (by signaling the condition)

ni.com

Conditional Variable

A synchronization primitive that provides a queue for threads waiting

for a resource.

Operations:

• wait - add calling thread to the queue and put it to sleep (potentially with

a timeout)

• signal - remove a thread from the queue and wake it up

• broadcast - remove and wake-up all threads on the queue

ni.com

Monitor

A synchronization construct that allows threads to have both mutual

exclusion and the ability to wait for a certain condition.

Composed of:

• a lock object - provides the mutual exclusion (mutex)

• one or more condition variables - provides the queues to wait on after

atomically releasing the mutex

Higher-level languages (e.g. C#, D) support monitors natively.

In C/C++ they must be constructed from a mutex and conditional variables.

ni.com

Monitor design rule

Multiple condition variables can be associated with the same mutex,

but not vice versa.

queue mutex

producer

producer

producer

producer full condition empty condition

producer

consumer

consumer

consumer

consumer

consumer

… …

ni.com

Hoare-style monitors (most theory)

• Signaler passes lock to waiter

• Waiter runs immediately

• Condition is guaranteed to hold while waiter runs

• Waiter gives lock back to signaler when it exits the critical section

or if it waits again

ni.com

Mesa-style monitors (most real OSes)

• Signaler keeps lock

• Waiter simply put on ready queue

• Might have to wait for the lock again

• Must recheck condition

ni.com

Making a resource available (Mesa-style)

lock(mutex)
...
/* make resource available */
...
signal(cond)
/* or broadcast(cond) */

unlock(mutex)

ni.com

Waiting for a resource (Mesa-style)

lock(mutex)
while (no_resource)

wait(cond, mutex)
...
/* after wait we own the mutex
and can use the resource */
...
unlock(mutex)

while loop necessary due to
allowed spurious wake-ups

atomically releases the
mutex and waits on cond

ni.com

Monitor Real-Time design constraint

Threads are woken in priority order

queue mutex

producer

producer

producer

producer full condition empty condition

producer

consumer

consumer

consumer

consumer

consumer

… …

RT_FIFO:95

RT_FIFO:15

RT_FIFO:50

ni.com

time

p
ri
o

ri
ty

T2

T3

T1

T1

acquires

lock L

T2

executes

T3 blocks

on lock L

T3 preempts

T1

T2

finishes,

T1 runs

T1

releases

lock Lunbounded latency

Priority inversion

ni.com

Priority inheritance

time

p
ri
o

ri
ty

T2

T3

T1

T1

acquires

lock L

T1 priority

boosted

T3 blocks

on lock L

T3 preempts

T1

T2 runsT1

releases

lock L

T3

acquires

lock L

bounded latency

ni.com

https://sourceware.org/bugzilla/show_bug.cgi?id=11588

https://sourceware.org/bugzilla/show_bug.cgi?id=11588

ni.com

ni.com

https://sourceware.org/bugzilla/show_bug.cgi?id=13165

https://sourceware.org/bugzilla/show_bug.cgi?id=13165

ni.com

POSIX Austin Group defect #609

https://www.austingroupbugs.net/view.php?id=609

ni.com

Current design of glibc conditional variables

• New waiters start in non-eligible group G2

• Group G1 contains only eligible waiters

• A signal will wake some thread in G1

• When all waiters in G1 are signaled, G2 becomes the new G1

W1 W2

S1W1 W2

W1 W2G2

G1

G1 S1 W3G2 S2

W3G1 S3 G2

ni.com

Problems with current design

• New RT priority waiters start in non-eligible group G2

• will have to wait until G1 is completely signaled

• Signaling is done with a FUTEX_WAKE operation

• woken threads must contend for the associated mutex (thundering herd)

W1 W2G1 S1 WRTG2 S2Wn
Sn… …

ni.com

Bug 11588 – no known solution for glibc > 2.24

https://sourceware.org/bugzilla/show_bug.cgi?id=11588

ni.com

Priority inheritance support in libpthread

With priority inheritance support:

pthread_mutex_*

Without priority inheritance support:

pthread_barrier_*

pthread_rwlock_*

sem_*

pthread_spin_*

FUTEX_WAIT/WAKE

FUTEX_WAIT_BITSET/WAKE

user-space spinning

FUTEX_LOCK_PI/UNLOCK_PI

(enabled via mutex attributes)

ni.com

The librtpi project inception and history

• I presented on the problem at RT Summit 2017 (video)

• Sebastian Andrezej Siewior set-up a meeting with: Darren Hart, Peter Zijlstra,

Julia Cartwright, and me

• Given the glibc constraints we decided to try a standalone implementation

• Darren put together the initial spec and github project

• Sebastian and Julia worked on fleshing it out at Summit on a Summit 2018

• Darren and Julia presented a status update at Linux Plumbers 2018 (video)

• I worked with Darren to fix corner cases and bugs, add tests, and tweak the API

(ELC 2019)

https://youtu.be/-fvW0b14lOU?list=PLbzoR-pLrL6r4xoc1PmRiYh2-qraTilVu&t=1458
https://github.com/dvhart/librtpi
https://www.linuxplumbersconf.org/event/2/contributions/191/attachments/177/291/go

ni.com

Librtpi design goals

• Priority inheritance by default

• Waiters will be woken in priority order

• Signaler must hold the lock

• Avoid “thundering herd” effect

• Default to CLOCK_MONOTONIC for timed waits

• Opaque data types to allow for future expansion

• API as close as possible to the POSIX pthread specification

ni.com

Librtpi license, build, and test

• LGPL 2.1

• makes it possible to link/reuse glibc code

• broadly usable in industry

• Autotools build system

• Travis CI (github)

ni.com

pi_mutex

int pi_mutex_init(pi_mutex_t *mutex,

uint32_t flags);

int pi_mutex_destroy(pi_mutex_t *mutex);

int pi_mutex_lock(pi_mutex_t *mutex);

int pi_mutex_trylock(pi_mutex_t *mutex);

int pi_mutex_unlock(pi_mutex_t *mutex);

#define DEFINE_PI_MUTEX(mutex, flags)

#define RTPI_MUTEX_PSHARED 0x1

pi_mutex_t *pi_mutex_alloc(void);

void pi_mutex_free(pi_mutex_t *mutex);

ni.com

Porting POSIX code to pi_mutex

int pi_mutex_init(pi_mutex_t *mutex,

uint32_t flags);

int pi_mutex_destroy(pi_mutex_t *mutex);

int pi_mutex_lock(pi_mutex_t *mutex);

int pi_mutex_trylock(pi_mutex_t *mutex);

int pi_mutex_unlock(pi_mutex_t *mutex);

#define DEFINE_PI_MUTEX(mutex, flags)

#define RTPI_MUTEX_PSHARED 0x1

pi_mutex_t *pi_mutex_alloc(void);

void pi_mutex_free(pi_mutex_t *mutex);

ni.com

pi_mutex_lock() implementation

int futex(int *uaddr,

int futex_op,

int val,

const struct timespec *timeout,

int *uaddr2,

int val3);

PI futex address (&mutex->futex)

FUTEX_LOCK_PI [| FUTEX_PRIVATE_FLAG]

0: deadlock detection, unused

if (!__sync_bool_compare_and_swap(&mutex->futex, 0, pid))

syscall(SYS_futex, …);

ni.com

pi_mutex_unlock() implementation

int futex(int *uaddr,

int futex_op,

int val,

const struct timespec *timeout,

int *uaddr2,

int val3);

PI futex address (&mutex->futex)

FUTEX_UNLOCK_PI [| FUTEX_PRIVATE_FLAG]

0: deadlock detection, unused

if (!__sync_bool_compare_and_swap(&mutex->futex, pid, 0))

syscall(SYS_futex, …);

ni.com

pi_cond

int pi_cond_init(pi_cond_t *cond,

uint32_t flags);

int pi_cond_destroy(pi_cond_t *cond);

int pi_cond_wait(pi_cond_t *cond,

pi_mutex_t *mutex);

int pi_cond_timedwait(pi_cond_t *cond,

pi_mutex_t *mutex,

const struct timespec *abstime);

int pi_cond_signal(pi_cond_t *cond,

pi_mutex_t *mutex);

int pi_cond_broadcast(pi_cond_t *cond,

pi_mutex_t *mutex);

#define DEFINE_PI_COND(condvar, flags)

#define RTPI_COND_PSHARED \

RTPI_MUTEX_PSHARED

pi_cond_t *pi_cond_alloc(void);

void pi_cond_free(pi_cond_t *cond);

ni.com

Porting POSIX code to pi_cond

int pi_cond_init(pi_cond_t *cond,

uint32_t flags);

int pi_cond_destroy(pi_cond_t *cond);

int pi_cond_wait(pi_cond_t *cond,

pi_mutex_t *mutex);

int pi_cond_timedwait(pi_cond_t *cond,

pi_mutex_t *mutex,

const struct timespec *abstime);

int pi_cond_signal(pi_cond_t *cond,

pi_mutex_t *mutex);

int pi_cond_broadcast(pi_cond_t *cond,

pi_mutex_t *mutex);

#define DEFINE_PI_COND(condvar, flags)

#define RTPI_COND_PSHARED \

RTPI_MUTEX_PSHARED

pi_cond_t *pi_cond_alloc(void);

void pi_cond_free(pi_cond_t *cond);

ni.com

pi_cond_signal() / broadcast() implementation

/* called with the mutex locked (per API) */

cond->cond++;

cond->wake_id = cond->cond;

ret = syscall(SYS_futex, …, FUTEX_CMP_REQUEUE_PI,…);

if (ret >= 0)

return 0;

/* retry on EAGAIN */

return errno;

ni.com

Futex syscall used for signaling

int futex(int *uaddr,

int futex_op,

int val,

uint32_t val2,

int *uaddr2,

int val3);

non-PI futex waiters are queued on

FUTEX_CMP_REQUEUE_PI [| FUTEX_PRIVATE_FLAG]

number of threads to wake (required to be 1)

number of threads to requeue
(0:signal, INT_MAX: broadcast)

target PI futex to requeue threads on

ni.com

pi_cond_wait() / timedwait() implementation

cond->cond++;

wake_id = cond->wake_id;

pi_mutex_unlock(mutex);

ret = syscall(SYS_futex, …, FUTEX_WAIT_REQUEUE_PI,…);

if (!ret)

return 0; /* normal wakeup and we own the lock */

pi_mutex_lock(mutex);

/* retry on EAGAIN unless we’ve raced with a signaler */

return errno;

ni.com

Futex syscall used for waiting

int futex(int *uaddr,

int futex_op,

int val,

const struct timespec *timeout,

int *uaddr2,

int val3);

non-PI futex thread waits on

FUTEX_WAIT_REQUEUE_PI [| FUTEX_PRIVATE_FLAG]

futex word value (race detection)

absolute timeout (NULL: wait forever)

PI futex thread gets requeued on
(a.k.a. user mutex/monitor mutex)

ni.com

Current status

• Glibc tests and API change merged at: https://github.com/dvhart/librtpi

• Still owe Darren some pull requests: https://github.com/gratian/librtpi/commits/latest

• locking fixes, pi_mutex fix for process shared case

• simplified sequence counters / race detection

• get rid of internal private mutex

• CLOCK_REALTIME support

• cancellation support (?)

• general clean-ups, documentation, error checks etc. (~25 commits ahead)

https://github.com/dvhart/librtpi
https://github.com/gratian/librtpi/commits/latest

ni.com

Current status (cont’d)

• librtpi.so ~ 34KB (x86_64)

• All tests pass*

• Used in production at NI

• Want do an “official” release when remaining

issues merged

ni.com

Future

• Users, testers, and contributors

• https://github.com/dvhart/librtpi

• https://github.com/gratian/librtpi/tree/latest

• Extend it into a user space toolbox for Real-Time design

• other locking primitives relevant for RT

• RT safe queues for arbitrary data types

• circular buffers, priority queues, IPC mechanisms

• other building blocks useful for RT applications

• Your ideas and questions

https://github.com/dvhart/librtpi
https://github.com/gratian/librtpi/tree/latest

