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USB Overview



  

USB Bus Speeds

● Low Speed
● 1.5 Mb/sec

● Full Speed
● 12 Mb/sec

● High Speed
● 480 Mb/sec

● Super Speed
● 5.0 Gb/sec



  

USB Bus Speeds

● Bus speeds are the rate of bit 
transmission on the bus

● Bus speeds are NOT data transfer speeds
● USB protocol can have significant 

overhead
● USB overhead can be mitigated if

your protocol is designed correctly.



  

USB Standards

● USB 1.1 – 1998
– Low Speed / Full Speed

● USB 2.0 – 2000
– High Speed added

● USB 3.0 – 2008
– SuperSpeed added

● USB Standards do NOT imply a
bus speed!

➢ A USB 2.0 device can be High
Speed, Full Speed, or Low Speed



  

USB Terminology

● Device – Logical or physical entity which 
performs a function.
● Thumb drive, joystick, etc.

● Configuration – A mode in which to operate.
● Many devices have one configuration.
● Only one configuration is active at a time.



  

USB Terminology

● Interface – A related set of Endpoints which 
present a single feature or function to the host.
● A configuration may have multiple interfaces
● All interfaces in a configuration are active

at the same time.

● Endpoint – A source or sink of data
● Interfaces often contain multiple

endpoints, each active all the
time.



  

Logical USB Device

Configuration 1

Interface 0

Endpoint 1 OUT

Endpoint 1 IN

Endpoint 2 IN

Interface 1

Endpoint 3 OUT

Endpoint 3 IN

Configuration 2

Interface 0

Endpoint 1 OUT

Endpoint 1 IN

Interface 1

Endpoint 2 OUT

Endpoint 2 IN

USB Device



  

Endpoints

● Four types of Endpoints
● Control

– Bi-directional pair of endpoints
● Status stage can return success/failure

– Multi-stage transfers
– Used during enumeration
– Can also be used for application
– Mostly used for configuration items



  

Endpoints

● Interrupt
– Transfers a small amount of low-latency data
– Used for time-sensitive data (HID).
– Reserves bandwidth on the bus

● Bulk
– Used for large, time-insensitive data

(Network packets, Mass Storage,
etc).

– Does not reserve bandwidth on bus
● Uses whatever time is left over



  

Endpoints

● Isochronous
– Transfers a large amount of time-sensitive data
– Delivery is not guaranteed

● No ACKs are sent

– Used for Audio and Video streams
● Late data is as good as no data
● Better to drop a frame than to delay and force

a re-transmission



  

Endpoints

● Endpoint Length
● The maximum amount of data an endpoint can 

support sending or receiving per transaction.
● Max endpoint sizes:

– Full-speed:
● Bulk/Interrupt: 64
● Isoc: 1024

– High-Speed:
● Bulk: 512
● Interrupt: 3072
● Isoc: 1024 x3



  

Transfers

● Transaction
● Delivery of service to an endpoint
● Max data size: Endpoint length

● Transfer
● One or more transactions moving

information between host and device.
➢ Transfers can be large, even on

small endpoints!



  

Transfers

Transfer

Transaction

Transaction

Transaction

Transaction

Transaction

● Transfers contain one 
or more transactions.

● Transfers are ended by:
● A short transaction

OR
● When the desired 

amount of data has 
been transferred
➢ As requested

by the host



  

Terminology

● In/Out
● In USB parlance, the terms In and Out indicate 

direction from the Host perspective.
– Out: Host to Device
– In: Device to Host



  

The Bus

● USB is a Host-controlled bus
● Nothing on the bus happens without the host first 

initiating it.
● Devices cannot initiate a transaction.

● The USB is a Polled Bus
● Devices cannot interrupt the host
● The Host polls each device,

requesting data or sending data.



  

Transactions

● IN Transaction (Device to Host)
● Host sends an IN token
● If the device has data:

– Device sends data
– Host sends ACK

else
– Device sends NAK

➢ If the device sends a NAK,the
host will retry repeatedly until
timeout.



  

Transactions

● OUT Transaction (Host to Device)
● Host sends an OUT token
● Host sends the data (up to endpoint length)
● Device sends an ACK (or NAK).

➢ The data is sent before the device has
a chance to respond at all.

➢ In the case of a NAK, the host
will retry until timeout or success.



  

Transactions

● All traffic is initiated by the Host
● In user space, this is done from libusb:

● Synchronous:
libusb_control_transfer()

libusb_bulk_transfer()

libusb_interrupt_transfer()

● Asynchronous:

libusb_submit_transfer()



  

Transactions

● In kernel space, this is done from:
● Synchronous:

usb_control_msg()

usb_bulk_msg()

usb_interrupt_msg()

● Asynchronous:
usb_submit_urb()



  

Transactions

● For All types of Endpoint:
● The Host will not send any IN or

OUT tokens on the bus unless a
transfer object is active.

● The bus is idle otherwise
● Create and submit a transfer object

using the functions on the preceding
slides.



  

Linux USB 
Gadget Interface 
and Hardware



  

USB Gadget Interface

● Linux supports USB Device Controllers (UDC) 
through the Gadget framework.
● Kernel sources in drivers/usb/gadget/

● The gadget framework has transitioned
to use configfs for its configuration



  

USB Device Hardware

● UDC hardware is not standardized
● This is different from most host controllers
● We will focus on musb, EG20T, and PIC32
● musb 

– IP core by Mentor Graphics
● Recently becoming usable

– Common on ARM SoC's such as the
AM335x on the BeagleBone Black
(BBB)

– Host and Device



  

USB Device Hardware

● Intel EG20T Platform Controller Hub (PCH)
– Common on Intel-based x86 embedded platforms
– Part of many industrial System-on-Module

(SoM) parts
– Device Only (EHCI typically used for Host)

● Microchip PIC32MX
– Microcontroller
– Does not run Linux (firmware solution)
– Full-speed only
– M-Stack OSS USB Stack



  

Test Hardware



  

Test Hardware

● BeagleBone Black
● Texas Instruments / CircuitCo
● AM3359, ARM Cortex-A8 SOC
● 3.3v I/O, 0.1” spaced connectors
● Boots mainline kernel and u-boot!
● Ethernet, USB host and device

(musb), Micro SD
● Great for breadboard prototypes
● http://www.beagleboard.org 

Image from beagleboard.org



  

Test Hardware

● OEM Intel Atom-based board
● Intel Atom E680
● 1.6 GHz x86 hyperthreaded 32-bit CPU
● 1 GB RAM
● Intel EG20T platform controller

– Supports USB Device (pch_udc driver)
– Serial, CAN, Ethernet, more...



  

Test Hardware

● ChipKit Max32
● PIC32MX795F512L

– 32-bit Microcontroller
– Up to 80 MHz (PLL)

● Running at 60 MHz here

– Full Speed USB
● M-Stack OSS USB Stack

– 512 kB flash
– 128 kB RAM
– Serial, CAN, Ethernet, SPI, I2C, A/D, RTCC
– http://chipkit.net



  

Performance



  

Performance

● Three classes of USB device:

1. Designer wants an easy, well-supported 
connection to a PC

2. Designer wants to make use of an
existing device class and not write
drivers

3. Designer wants #1 but also wants to
move a lot of data quickly.



  

Performance

● For Cases #1 and #2, naïve methods can get 
the job done:
● HID (Not recommended for generic devices)
● Simplistic software on both the host

and device side
– For #2, no software on the host side!

● Synchronous interfaces copied from
examples

● What about where we need
performance?



  

Performance

● A simple example:
● High-speed Device
● 512-byte bulk endpoints
● Receive data from device using libusb

in logical application-defined blocks
– In this case let's use 64-bytes



  

Simple Example - Host
    
    unsigned char buf[64];
    int actual_length;

    do {
        /* Receive data from the device */
        res = libusb_bulk_transfer(handle, 0x81, buf,
                  sizeof(buf), &actual_length, 100000);
        if (res < 0) {
            fprintf(stderr, "bulk transfer (in): %s\n", 
                    libusb_error_name(res));
            return 1;
        }
    } while (res >= 0);



  

Simple Example - Device
#!/bin/sh -ex

# Setup the device (configfs)
modprobe libcomposite
mkdir -p config
mount none config -t configfs
cd config/usb_gadget/
mkdir g1
cd g1
echo 0x1a0a >idVendor 
echo 0xbadd >idProduct
mkdir strings/0x409
echo 12345 >strings/0x409/serialnumber 
echo "Signal 11" >strings/0x409/manufacturer 
echo "Test" >strings/0x409/product 
mkdir configs/c.1
mkdir configs/c.1/strings/0x409
echo "Config1" >configs/c.1/strings/0x409/configuration 



  

Simple Example – Device (cont'd)

# Setup functionfs
mkdir functions/ffs.usb0
ln -s functions/ffs.usb0 configs/c.1

cd ../../../
mkdir -p ffs
mount usb0 ffs -t functionfs
cd ffs
../ffs-test 64 & # from the Linux kernel, with mods!
sleep 3
cd ..

# Enable the USB device
echo musb-hdrc.0.auto >config/usb_gadget/g1/UDC



  

Simple Example - Results

● On the BeagleBone Black:
● Previous example will transfer at 4 Mbit/sec !
● Remember this is a high-speed device!
● Clearly far too slow!
● What can be done?



  

Performance Enhancements

● The simple example used libusb's 
synchronous API.
● Good for infrequent, single transfers.

– Easy to use, blocking, return code
● Bad for any kind of performance-critical

applications.
– Why? Remember the nature of the

USB bus....



  

● The USB Bus
● Entirely host controlled
● Device only sends data when the host

controller specifically asks for it.
● The host controller will only ask for data

when a transfer object is active.
– libusb creates a transfer object when

(in our example)
libusb_bulk_transfer() is called.

Synchronous API Issues



  

Synchronous API Issues

libusb_bulk_transfer()

ioctl(IOCTL_USBFS_SUBMITURB)

*HCI

Send IN token

Send data packet

Send ACK

DeviceHost

USB Host 
Controller 
Hardware USB Transaction



  

Synchronous API Issues

● USB Bus
● After a transfer completes, the device will not send 

any more data until another transfer is created and 
submitted!

● In our simple example, this is done with 
libusb_bulk_transfer() in a tight loop.
– Tight loops are not tight enough!

● For short transfers time spent in software
will be more than time spent in
hardware!

● All time spent in software is time a
transfer is not active!



  

Asynchronous API

● Fortunately libusb and the kernel provide an 
asynchronous API.
● Create multiple transfer objects
● Submit transfer objects to the kernel
● Receive callback when transfers

complete

● When a transfer completes, there is
another (submitted) transfer
already queued.
● No downtime between transfers!



  

Better Example - Host
static struct libusb_transfer 
*create_transfer(libusb_device_handle *handle, size_t length) {
        struct libusb_transfer *transfer;
        unsigned char *buf;

        /* Set up the transfer object. */
        buf = malloc(length);
        transfer = libusb_alloc_transfer(0);
        libusb_fill_bulk_transfer(transfer,
                handle,
                0x81 /*ep*/,
                buf,
                length,
                read_callback,
                NULL/*cb data*/,
                5000/*timeout*/);

        return transfer;
}



  

Better Example – Host (cont'd)
static void read_callback(struct libusb_transfer *transfer)
{
        int res;
        
        if (transfer->status == LIBUSB_TRANSFER_COMPLETED) {
                /* Success! Handle data received */
        }
        else {
                printf("Error: %d\n", transfer->status);
        }

        /* Re-submit the transfer object. */
        res = libusb_submit_transfer(transfer);
        if (res != 0) {
                printf("submitting. error code: %d\n", res);
        }
}



  

Better Example – Host (cont'd)
        /* Create Transfers */
        for (i = 0; i < 32; i++) {
                struct libusb_transfer *transfer =
                        create_transfer(handle, buflen);
                libusb_submit_transfer(transfer);
        }

        /* Handle Events */
        while (1) {
                res = libusb_handle_events(usb_context);
                if (res < 0) {
                        printf("handle_events()error # %d\n",
                               res);

                        /* Break out of this loop only on fatal error.*/
                        if (res != LIBUSB_ERROR_BUSY &&
                            res != LIBUSB_ERROR_TIMEOUT &&
                            res != LIBUSB_ERROR_OVERFLOW &&
                            res != LIBUSB_ERROR_INTERRUPTED) {
                                break;
                        }
                }
        }



  

Asynchronous API

● This example creates and queues 32 transfers.
● When a transfer completes, the completed transfer 

object is re-queued.
● All the transfers in the queue can

conceivably complete without a trip
to userspace.

● Results on BeagleBone Black:
● 15 Mbit/sec

– A little better, but still not good!



  

Transfer Size

● The previous examples used a 64-byte transfer 
size.
– One short transaction per transfer

➢ The max bulk endpoint size is 512-bytes.
● Larger transactions mean less overhead.

– Each transaction requires three packets
● Token phase
● Data phase
● Handshake phase (ACK/NAK)

– Longer data packets means fewer
transactions.



  

Transfer Size

● Results:
● On BeagleBone Black, 512-byte transfers using the 

asynchronous API yields:
– 82 Mbit/sec

● Better, but still sub-optimal
● Why still so slow?

– Transaction size is maximal...
– Host side latency is minimal...
– Use analyzer to find out.



  

USB Analyzer

● TotalPhase Beagle Analyzers
● Beagle USB 480 Power Protocol Analyzer
● Well supported on Linux
● Class-level debugging
● Power (current/voltage)

analysis
● http://www.totalphase.com



  

USB Analyzer

~55 uSec per 
transaction 

512-byte transfers



  

USB Analyzer

Host Requests data

Device sends 
NAKs for 41 us.
(device latency)

5 us between ACK 
and next request
(host latency)

● Opening the transactions gives more insight



  

USB Analyzer

● Observations
● Certainly the 41us of NAK time is less than ideal.
● Don't be fooled by the displayed 5us between 

transactions.
– There's more to the story!

● The bus scheduler can adapt to the
actual time between packets.
– Number of IN-NAKs will go down
– Time will stay the same.
– Don't count NAKs; look at times!



  

Transfer Sizes

● What changes with multi-transaction transfers?
– Depends on the UDC hardware.
– Many UDC controllers use DMA at the

Transfer-level.
● One DMA transfer per USB transfer.
● Minimizing the number of DMA transfers

will decrease DMA overhead.
● Decrease the number of transfers by

increasing the transfer size.

– Fewer trips to user-space!



  

Transfer Sizes

● Increased transfer size
● Limited by hardware/DMA/Driver
● 64kB seems to work well

– Performance increases with transfer size
up to 64k and plateaus in testing.

● Performance with 64kB transfers:
– BeagleBone Black: 211 Mbit/sec
– Intel E680 Board: 305 Mbit/sec



  

USB Analyzer – Large Transfers

Example: Transfer size = 2047 (512 * 3 + 511)

Single Transfer
Transfers end with the 511-byte transaction



  

USB Analyzer – Large Transfers

First Transaction

39.4 us lost between
transfers

Only 6.6 us
lost between
transactions

Single Transfer

Same Transfer, but with first two transactions open

A significant improvement 
over losing ~40 us between 
each transaction!



  

Large Transfers

● What about Full Speed?
● PIC32MX tops out around 8.6 Mbit/sec.

– 64 kB transfer
– Asynchronous API

● Performance improvement with transfer
size increase is not as dramatic:
– 8.2 Mbit/sec with 64-byte transfers
– Asynchronous API



  

Large Transfers

● Limitations to large transfers
● USB is a message-based protocol.

– It's convenient to put one logical piece of data
into its own transfer.

– Packing multiple logical pieces of data into
one large buffer loses some of the benefit
of the USB protocol.

– A necessary trade-off if performance
is desired.

● Queuing of messages can cause
increased latency (marginal).



  

Other Considerations

● User space vs Kernel space
● The above examples use the kernel's Functionfs

interface on the device side.
– Functionfs, using the ffs-test.c from

mainline, takes transfers from a user space
process synchronously.

● Synchronous –> delay between transfers
● Mitigated by larger transfers

– Functionfs can also use Linux's
Asynchronous I/O capability

● Better performance
● tools/usb/ffs-aio-example/



  

Other Considerations

● User space vs Kernel Space (cont'd)
● Custom gadget function driver

– Can queue packets on the device side
inside the kernel.

● Queuing can happen even when the
hardware is busy.



  

Custom Driver

● Driver details
● Custom Driver has a queue of 32 transfers
● Device node at /dev/user-gadget

● Performance
● BeagleBone Black:

– 227 Mbit/sec, ~7.6% better than ffs-test

● EG20T:
– 328 Mbit/sec, ~7.5% better



  

Out Transfers

● One might expect OUT transfers to behave similarly 
to IN transfers.

● On musb, they do not
– musb: Max throughput of 65.5 Mbit/sec

● Same for sync and async
● 64 kB transfers

– For data received, a DMA transfer is
done for every USB Transaction.

● Overhead is high
● Large transfers don't help :(



  

Out Transfers

● On EG20T
– Max throughput of 255 Mbit/sec

● 64 kB transfers

– Still slower than IN transfers
– Throughput scales with transfer size.



  

Results



  

Test Methodology

● Test with the synchronous and asynchronous 
libusb API's

● Test idle and under load
– Device load (musb):

● stress -c 1 -m 1

– Device load (EG20T):
● stress -c 2 -m 2
➢ Host machine has one hyperthreaded core

– Host load:
● stress -c 4 -m 4
➢ Host machine has 4 cores



  

musb Results (IN Transfers)

64

512

1024

65536

Driver (65535)

0 50 100 150 200 250

Idle Sync

Idle Async

Load (Device) Sync

Load (Device) Async

Load (Host) Sync

Load (Host) Async

Mbit/sec

Transfer
Size



  

EG20T Results (IN Transfers)

64

512

1024

65536

Driver (65535)

0 50 100 150 200 250 300 350

Idle Sync
Idle Async
Load (Device) Sync
Load (Device) Async
Load (Host) Sync
Load (Host) Async
Idle Fast Sync
Idle Fast Async

Mbit/sec

Transfer
Size



  

Results

● Warning:
● Comparisons between controllers should be 

considered cautiously.
– Plenty of differences between

boards/platforms.
– Different CPU speeds affect performance

tremendously.
● One hyperthreaded, one single core

– We know what they say about
benchmarks.

– Use the data to compare effects
within a controller type



  

Results

● musb/EG20T (Input) Analysis
● Larger transfer size is much better
● Sync/Async affects smaller transfers more than 

larger transfers.
– Less time proportionally lost between transfers

● Transfer size affects EG20T even more
than musb

● Host Load doesn't make much difference
● Device Load makes more difference

– Data is sourced from user space



  

PIC32MX Results (IN Transfers)

32

64
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1024

65536
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PIC32MX Results (IN TRF with hub)
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Results

● PIC32MX (Input) Analysis
● Larger transfer sizes don't help as much for sync 

as they do for async.
● Addition of a hub has a surprising affect

– Analyzer shows more frequent IN tokens
when connected through a hub.

– Synchronous transfers are faster
– Asynchronous transfers slightly

slower
➢ The hub's Transaction Translator

(TT) is affecting the performance



  

musb Results (OUT Transfers)

64

512

1024

65536
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EG20T Results (OUT Transfers)

64

512
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65536
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Results

● musb/EG20T (OUT) Analysis
● musb does one DMA transfer

per USB transaction.
● musb OUT Performance tops out with

512-byte transfers
➢ Endpoint size is 512.

● EG20T OUT performance scales
similarly to IN performance.

● Hub numbers are similar but
slightly slower (see spreadsheet)



  

PIC32MX Results (OUT Transfers)
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PIC32MX Results (OUT TRF with hub)
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Results

● PIC32MX (Output) Analysis
● OUT transfers are affected by the hub the same 

way IN transactions are
● Speed is comparable to IN transfers



  

Further
Optimizations



  

Isochronous Endpoints

● Features
● Un-acknowledged, non-guaranteed
● Bandwidth reserved
● Up to 3x1024 bytes per 125us microframe

– 3072 bytes/μframe: 196 Mbit/sec per endpoint

● Issues
● Requires AlternateSetting

– Not supported by functionfs
● Bandwidth must be available



  

Multiple Endpoints

● Using multiple bulk endpoints can increase 
performance.
– All endpoints and devices share bus time
– If bottleneck is DMA, extra concurrency could

increase performance.
– More complex to manage.
– Depends also on host scheduling.



  

High-Bandwidth Interrupt

● High-speed Interrupt endpoints at > 1024 bytes
● Can go as high as 3072
● Reserved Bandwidth
● Acknowledged
● AlternateSetting required
● Bus bandwidth must be available

– Device will fail to enumerate or
change AlternateSetting if
bandwidth is not available.



  

Common Pitfalls



  

Common Pitfalls

● HID
● Based on Interrupt Transfers.
● Host will poll interrupt endpoints at up to

once per 1ms frame at full speed.
● Interrupt transfers at full speed can be

up to 64 bytes in length.
● Simple math is 64,000 bytes/sec

– Good enough for many applications
● Except....



  

Common Pitfalls

● HID
● … Except you don't always get it! Many hosts

don't actually poll you that often!
– 2-4 frames is much more realistic

(sometimes worse!)
– Some write synchronous protocols with HID

● Those are even slower!
– 2-4 frames for data, 2-4 frames for

acknowledgement!
● 8 kB/sec in this case

● Use Bulk/Isoc endpoints!
– Use libusb on the host side



  

Common Pitfalls

● Serial Gadget
● The f_serial gadget function creates /dev/ttyGSn 

nodes.
– Data is written/read to/from these nodes

from the gadget/device side.
– Since the data goes through the tty

framework, it is broken into small
transfers.

– Performance is suboptimal, but ease
of use is high.



  

Tracepoint
Analysis



  

Tracepoints

● The kernel provides a tracing mechanism 
called ftrace.

– Tracepoints are placed in source code
– Enabled/disabled at runtime
– Tracepoints can log data

– trace-cmd utility to log data

– kernelshark GUI to view/analyze it

– Useful for finding latencies



  

Tracepoints

● Available Tracers
● Additional tracers need to be enabled in 
menuconfig
– Log every kernel function
– Log max call stack size
– Trace system calls
– Scheduling latency
– Others...



  

KernelShark

● GUI for trace analysis
● Graphically show tracepoints

– Per-CPU
– Per-process

● Show tracepoint data
● Complex filtering

– By process, CPU, event type or name
● Excellent documentation

– http://people.redhat.com/srostedt/kernelshark/HTML/



  

Tracepoints

● musb driver was modified to add tracepoints
● Declare tracepoints:

– musb-trace.h
● Call tracepoint functions (with data):

– musb_gadget.c
– musbhsdma.c



  

KernelShark

Filtered for musb



  

Tracepoints

● Results
● Results show the latency involved in the

context switch.
– Along with DMA overhead, another

reason to use large transfers.



  

Lessons Learned

● Gadget interface is Fragile
● Functionfs doesn't support AltSettings

● No Isochronous endpoints
● No high-bandwidth Interrupt endpoints

● Performance is host-dependent
● Hubs

● Can have strange effects
● Some good, some bad.



  

Alan Ott
alan@signal11.us 
www.signal11.us

+1 407-222-6975 (GMT -5)
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