

USB and the Real World

Alan Ott
Embedded Linux Conference - Europe

October 14, 2014

About the Presenter

● Chief Bit-Banger at Signal 11 Software
– Products and consulting services

● Linux Kernel
● Firmware
● Userspace
● Training
● USB

– M-Stack USB Device Stack for PIC
● 802.15.4 wireless

USB Overview

USB Bus Speeds

● Low Speed
● 1.5 Mb/sec

● Full Speed
● 12 Mb/sec

● High Speed
● 480 Mb/sec

● Super Speed
● 5.0 Gb/sec

USB Bus Speeds

● Bus speeds are the rate of bit
transmission on the bus

● Bus speeds are NOT data transfer speeds
● USB protocol can have significant

overhead
● USB overhead can be mitigated if

your protocol is designed correctly.

USB Standards

● USB 1.1 – 1998
– Low Speed / Full Speed

● USB 2.0 – 2000
– High Speed added

● USB 3.0 – 2008
– SuperSpeed added

● USB Standards do NOT imply a
bus speed!

➢ A USB 2.0 device can be High
Speed, Full Speed, or Low Speed

USB Terminology

● Device – Logical or physical entity which
performs a function.
● Thumb drive, joystick, etc.

● Configuration – A mode in which to operate.
● Many devices have one configuration.
● Only one configuration is active at a time.

USB Terminology

● Interface – A related set of Endpoints which
present a single feature or function to the host.
● A configuration may have multiple interfaces
● All interfaces in a configuration are active

at the same time.

● Endpoint – A source or sink of data
● Interfaces often contain multiple

endpoints, each active all the
time.

Logical USB Device

Configuration 1

Interface 0

Endpoint 1 OUT

Endpoint 1 IN

Endpoint 2 IN

Interface 1

Endpoint 3 OUT

Endpoint 3 IN

Configuration 2

Interface 0

Endpoint 1 OUT

Endpoint 1 IN

Interface 1

Endpoint 2 OUT

Endpoint 2 IN

USB Device

Endpoints

● Four types of Endpoints
● Control

– Bi-directional pair of endpoints
● Status stage can return success/failure

– Multi-stage transfers
– Used during enumeration
– Can also be used for application
– Mostly used for configuration items

Endpoints

● Interrupt
– Transfers a small amount of low-latency data
– Used for time-sensitive data (HID).
– Reserves bandwidth on the bus

● Bulk
– Used for large, time-insensitive data

(Network packets, Mass Storage,
etc).

– Does not reserve bandwidth on bus
● Uses whatever time is left over

Endpoints

● Isochronous
– Transfers a large amount of time-sensitive data
– Delivery is not guaranteed

● No ACKs are sent

– Used for Audio and Video streams
● Late data is as good as no data
● Better to drop a frame than to delay and force

a re-transmission

Endpoints

● Endpoint Length
● The maximum amount of data an endpoint can

support sending or receiving per transaction.
● Max endpoint sizes:

– Full-speed:
● Bulk/Interrupt: 64
● Isoc: 1024

– High-Speed:
● Bulk: 512
● Interrupt: 3072
● Isoc: 1024 x3

Transfers

● Transaction
● Delivery of service to an endpoint
● Max data size: Endpoint length

● Transfer
● One or more transactions moving

information between host and device.
➢ Transfers can be large, even on

small endpoints!

Transfers

Transfer

Transaction

Transaction

Transaction

Transaction

Transaction

● Transfers contain one
or more transactions.

● Transfers are ended by:
● A short transaction

OR
● When the desired

amount of data has
been transferred
➢ As requested

by the host

Terminology

● In/Out
● In USB parlance, the terms In and Out indicate

direction from the Host perspective.
– Out: Host to Device
– In: Device to Host

The Bus

● USB is a Host-controlled bus
● Nothing on the bus happens without the host first

initiating it.
● Devices cannot initiate a transaction.

● The USB is a Polled Bus
● Devices cannot interrupt the host
● The Host polls each device,

requesting data or sending data.

Transactions

● IN Transaction (Device to Host)
● Host sends an IN token
● If the device has data:

– Device sends data
– Host sends ACK

else
– Device sends NAK

➢ If the device sends a NAK,the
host will retry repeatedly until
timeout.

Transactions

● OUT Transaction (Host to Device)
● Host sends an OUT token
● Host sends the data (up to endpoint length)
● Device sends an ACK (or NAK).

➢ The data is sent before the device has
a chance to respond at all.

➢ In the case of a NAK, the host
will retry until timeout or success.

Transactions

● All traffic is initiated by the Host
● In user space, this is done from libusb:

● Synchronous:
libusb_control_transfer()

libusb_bulk_transfer()

libusb_interrupt_transfer()

● Asynchronous:

libusb_submit_transfer()

Transactions

● In kernel space, this is done from:
● Synchronous:

usb_control_msg()

usb_bulk_msg()

usb_interrupt_msg()

● Asynchronous:
usb_submit_urb()

Transactions

● For All types of Endpoint:
● The Host will not send any IN or

OUT tokens on the bus unless a
transfer object is active.

● The bus is idle otherwise
● Create and submit a transfer object

using the functions on the preceding
slides.

Linux USB
Gadget Interface
and Hardware

USB Gadget Interface

● Linux supports USB Device Controllers (UDC)
through the Gadget framework.
● Kernel sources in drivers/usb/gadget/

● The gadget framework has transitioned
to use configfs for its configuration

USB Device Hardware

● UDC hardware is not standardized
● This is different from most host controllers
● We will focus on musb, EG20T, and PIC32
● musb

– IP core by Mentor Graphics
● Recently becoming usable

– Common on ARM SoC's such as the
AM335x on the BeagleBone Black
(BBB)

– Host and Device

USB Device Hardware

● Intel EG20T Platform Controller Hub (PCH)
– Common on Intel-based x86 embedded platforms
– Part of many industrial System-on-Module

(SoM) parts
– Device Only (EHCI typically used for Host)

● Microchip PIC32MX
– Microcontroller
– Does not run Linux (firmware solution)
– Full-speed only
– M-Stack OSS USB Stack

Test Hardware

Test Hardware

● BeagleBone Black
● Texas Instruments / CircuitCo
● AM3359, ARM Cortex-A8 SOC
● 3.3v I/O, 0.1” spaced connectors
● Boots mainline kernel and u-boot!
● Ethernet, USB host and device

(musb), Micro SD
● Great for breadboard prototypes
● http://www.beagleboard.org

Image from beagleboard.org

Test Hardware

● OEM Intel Atom-based board
● Intel Atom E680
● 1.6 GHz x86 hyperthreaded 32-bit CPU
● 1 GB RAM
● Intel EG20T platform controller

– Supports USB Device (pch_udc driver)
– Serial, CAN, Ethernet, more...

Test Hardware

● ChipKit Max32
● PIC32MX795F512L

– 32-bit Microcontroller
– Up to 80 MHz (PLL)

● Running at 60 MHz here

– Full Speed USB
● M-Stack OSS USB Stack

– 512 kB flash
– 128 kB RAM
– Serial, CAN, Ethernet, SPI, I2C, A/D, RTCC
– http://chipkit.net

Performance

Performance

● Three classes of USB device:

1. Designer wants an easy, well-supported
connection to a PC

2. Designer wants to make use of an
existing device class and not write
drivers

3. Designer wants #1 but also wants to
move a lot of data quickly.

Performance

● For Cases #1 and #2, naïve methods can get
the job done:
● HID (Not recommended for generic devices)
● Simplistic software on both the host

and device side
– For #2, no software on the host side!

● Synchronous interfaces copied from
examples

● What about where we need
performance?

Performance

● A simple example:
● High-speed Device
● 512-byte bulk endpoints
● Receive data from device using libusb

in logical application-defined blocks
– In this case let's use 64-bytes

Simple Example - Host

 unsigned char buf[64];
 int actual_length;

 do {
 /* Receive data from the device */
 res = libusb_bulk_transfer(handle, 0x81, buf,
 sizeof(buf), &actual_length, 100000);
 if (res < 0) {
 fprintf(stderr, "bulk transfer (in): %s\n",
 libusb_error_name(res));
 return 1;
 }
 } while (res >= 0);

Simple Example - Device
#!/bin/sh -ex

Setup the device (configfs)
modprobe libcomposite
mkdir -p config
mount none config -t configfs
cd config/usb_gadget/
mkdir g1
cd g1
echo 0x1a0a >idVendor
echo 0xbadd >idProduct
mkdir strings/0x409
echo 12345 >strings/0x409/serialnumber
echo "Signal 11" >strings/0x409/manufacturer
echo "Test" >strings/0x409/product
mkdir configs/c.1
mkdir configs/c.1/strings/0x409
echo "Config1" >configs/c.1/strings/0x409/configuration

Simple Example – Device (cont'd)

Setup functionfs
mkdir functions/ffs.usb0
ln -s functions/ffs.usb0 configs/c.1

cd ../../../
mkdir -p ffs
mount usb0 ffs -t functionfs
cd ffs
../ffs-test 64 & # from the Linux kernel, with mods!
sleep 3
cd ..

Enable the USB device
echo musb-hdrc.0.auto >config/usb_gadget/g1/UDC

Simple Example - Results

● On the BeagleBone Black:
● Previous example will transfer at 4 Mbit/sec !
● Remember this is a high-speed device!
● Clearly far too slow!
● What can be done?

Performance Enhancements

● The simple example used libusb's
synchronous API.
● Good for infrequent, single transfers.

– Easy to use, blocking, return code
● Bad for any kind of performance-critical

applications.
– Why? Remember the nature of the

USB bus....

● The USB Bus
● Entirely host controlled
● Device only sends data when the host

controller specifically asks for it.
● The host controller will only ask for data

when a transfer object is active.
– libusb creates a transfer object when

(in our example)
libusb_bulk_transfer() is called.

Synchronous API Issues

Synchronous API Issues

libusb_bulk_transfer()

ioctl(IOCTL_USBFS_SUBMITURB)

*HCI

Send IN token

Send data packet

Send ACK

DeviceHost

USB Host
Controller
Hardware USB Transaction

Synchronous API Issues

● USB Bus
● After a transfer completes, the device will not send

any more data until another transfer is created and
submitted!

● In our simple example, this is done with
libusb_bulk_transfer() in a tight loop.
– Tight loops are not tight enough!

● For short transfers time spent in software
will be more than time spent in
hardware!

● All time spent in software is time a
transfer is not active!

Asynchronous API

● Fortunately libusb and the kernel provide an
asynchronous API.
● Create multiple transfer objects
● Submit transfer objects to the kernel
● Receive callback when transfers

complete

● When a transfer completes, there is
another (submitted) transfer
already queued.
● No downtime between transfers!

Better Example - Host
static struct libusb_transfer
*create_transfer(libusb_device_handle *handle, size_t length) {
 struct libusb_transfer *transfer;
 unsigned char *buf;

 /* Set up the transfer object. */
 buf = malloc(length);
 transfer = libusb_alloc_transfer(0);
 libusb_fill_bulk_transfer(transfer,
 handle,
 0x81 /*ep*/,
 buf,
 length,
 read_callback,
 NULL/*cb data*/,
 5000/*timeout*/);

 return transfer;
}

Better Example – Host (cont'd)
static void read_callback(struct libusb_transfer *transfer)
{
 int res;

 if (transfer->status == LIBUSB_TRANSFER_COMPLETED) {
 /* Success! Handle data received */
 }
 else {
 printf("Error: %d\n", transfer->status);
 }

 /* Re-submit the transfer object. */
 res = libusb_submit_transfer(transfer);
 if (res != 0) {
 printf("submitting. error code: %d\n", res);
 }
}

Better Example – Host (cont'd)
 /* Create Transfers */
 for (i = 0; i < 32; i++) {
 struct libusb_transfer *transfer =
 create_transfer(handle, buflen);
 libusb_submit_transfer(transfer);
 }

 /* Handle Events */
 while (1) {
 res = libusb_handle_events(usb_context);
 if (res < 0) {
 printf("handle_events()error # %d\n",
 res);

 /* Break out of this loop only on fatal error.*/
 if (res != LIBUSB_ERROR_BUSY &&
 res != LIBUSB_ERROR_TIMEOUT &&
 res != LIBUSB_ERROR_OVERFLOW &&
 res != LIBUSB_ERROR_INTERRUPTED) {
 break;
 }
 }
 }

Asynchronous API

● This example creates and queues 32 transfers.
● When a transfer completes, the completed transfer

object is re-queued.
● All the transfers in the queue can

conceivably complete without a trip
to userspace.

● Results on BeagleBone Black:
● 15 Mbit/sec

– A little better, but still not good!

Transfer Size

● The previous examples used a 64-byte transfer
size.
– One short transaction per transfer

➢ The max bulk endpoint size is 512-bytes.
● Larger transactions mean less overhead.

– Each transaction requires three packets
● Token phase
● Data phase
● Handshake phase (ACK/NAK)

– Longer data packets means fewer
transactions.

Transfer Size

● Results:
● On BeagleBone Black, 512-byte transfers using the

asynchronous API yields:
– 82 Mbit/sec

● Better, but still sub-optimal
● Why still so slow?

– Transaction size is maximal...
– Host side latency is minimal...
– Use analyzer to find out.

USB Analyzer

● TotalPhase Beagle Analyzers
● Beagle USB 480 Power Protocol Analyzer
● Well supported on Linux
● Class-level debugging
● Power (current/voltage)

analysis
● http://www.totalphase.com

USB Analyzer

~55 uSec per
transaction

512-byte transfers

USB Analyzer

Host Requests data

Device sends
NAKs for 41 us.
(device latency)

5 us between ACK
and next request
(host latency)

● Opening the transactions gives more insight

USB Analyzer

● Observations
● Certainly the 41us of NAK time is less than ideal.
● Don't be fooled by the displayed 5us between

transactions.
– There's more to the story!

● The bus scheduler can adapt to the
actual time between packets.
– Number of IN-NAKs will go down
– Time will stay the same.
– Don't count NAKs; look at times!

Transfer Sizes

● What changes with multi-transaction transfers?
– Depends on the UDC hardware.
– Many UDC controllers use DMA at the

Transfer-level.
● One DMA transfer per USB transfer.
● Minimizing the number of DMA transfers

will decrease DMA overhead.
● Decrease the number of transfers by

increasing the transfer size.

– Fewer trips to user-space!

Transfer Sizes

● Increased transfer size
● Limited by hardware/DMA/Driver
● 64kB seems to work well

– Performance increases with transfer size
up to 64k and plateaus in testing.

● Performance with 64kB transfers:
– BeagleBone Black: 211 Mbit/sec
– Intel E680 Board: 305 Mbit/sec

USB Analyzer – Large Transfers

Example: Transfer size = 2047 (512 * 3 + 511)

Single Transfer
Transfers end with the 511-byte transaction

USB Analyzer – Large Transfers

First Transaction

39.4 us lost between
transfers

Only 6.6 us
lost between
transactions

Single Transfer

Same Transfer, but with first two transactions open

A significant improvement
over losing ~40 us between
each transaction!

Large Transfers

● What about Full Speed?
● PIC32MX tops out around 8.6 Mbit/sec.

– 64 kB transfer
– Asynchronous API

● Performance improvement with transfer
size increase is not as dramatic:
– 8.2 Mbit/sec with 64-byte transfers
– Asynchronous API

Large Transfers

● Limitations to large transfers
● USB is a message-based protocol.

– It's convenient to put one logical piece of data
into its own transfer.

– Packing multiple logical pieces of data into
one large buffer loses some of the benefit
of the USB protocol.

– A necessary trade-off if performance
is desired.

● Queuing of messages can cause
increased latency (marginal).

Other Considerations

● User space vs Kernel space
● The above examples use the kernel's Functionfs

interface on the device side.
– Functionfs, using the ffs-test.c from

mainline, takes transfers from a user space
process synchronously.

● Synchronous –> delay between transfers
● Mitigated by larger transfers

– Functionfs can also use Linux's
Asynchronous I/O capability

● Better performance
● tools/usb/ffs-aio-example/

Other Considerations

● User space vs Kernel Space (cont'd)
● Custom gadget function driver

– Can queue packets on the device side
inside the kernel.

● Queuing can happen even when the
hardware is busy.

Custom Driver

● Driver details
● Custom Driver has a queue of 32 transfers
● Device node at /dev/user-gadget

● Performance
● BeagleBone Black:

– 227 Mbit/sec, ~7.6% better than ffs-test

● EG20T:
– 328 Mbit/sec, ~7.5% better

Out Transfers

● One might expect OUT transfers to behave similarly
to IN transfers.

● On musb, they do not
– musb: Max throughput of 65.5 Mbit/sec

● Same for sync and async
● 64 kB transfers

– For data received, a DMA transfer is
done for every USB Transaction.

● Overhead is high
● Large transfers don't help :(

Out Transfers

● On EG20T
– Max throughput of 255 Mbit/sec

● 64 kB transfers

– Still slower than IN transfers
– Throughput scales with transfer size.

Results

Test Methodology

● Test with the synchronous and asynchronous
libusb API's

● Test idle and under load
– Device load (musb):

● stress -c 1 -m 1

– Device load (EG20T):
● stress -c 2 -m 2
➢ Host machine has one hyperthreaded core

– Host load:
● stress -c 4 -m 4
➢ Host machine has 4 cores

musb Results (IN Transfers)

64

512

1024

65536

Driver (65535)

0 50 100 150 200 250

Idle Sync

Idle Async

Load (Device) Sync

Load (Device) Async

Load (Host) Sync

Load (Host) Async

Mbit/sec

Transfer
Size

EG20T Results (IN Transfers)

64

512

1024

65536

Driver (65535)

0 50 100 150 200 250 300 350

Idle Sync
Idle Async
Load (Device) Sync
Load (Device) Async
Load (Host) Sync
Load (Host) Async
Idle Fast Sync
Idle Fast Async

Mbit/sec

Transfer
Size

Results

● Warning:
● Comparisons between controllers should be

considered cautiously.
– Plenty of differences between

boards/platforms.
– Different CPU speeds affect performance

tremendously.
● One hyperthreaded, one single core

– We know what they say about
benchmarks.

– Use the data to compare effects
within a controller type

Results

● musb/EG20T (Input) Analysis
● Larger transfer size is much better
● Sync/Async affects smaller transfers more than

larger transfers.
– Less time proportionally lost between transfers

● Transfer size affects EG20T even more
than musb

● Host Load doesn't make much difference
● Device Load makes more difference

– Data is sourced from user space

PIC32MX Results (IN Transfers)

32

64

512

1024

65536

0 1 2 3 4 5 6 7 8 9

Idle Sync

Idle Async

Load (Host) Sync

Load (Host) Async

Mbit/sec

Transfer
Size

PIC32MX Results (IN TRF with hub)

32

64

512

1024

65536

0 1 2 3 4 5 6 7 8 9

Idle Sync

Idle Async

Load (Host) Sync

Load (Host) Async

Mbit/sec

Transfer
Size

Results

● PIC32MX (Input) Analysis
● Larger transfer sizes don't help as much for sync

as they do for async.
● Addition of a hub has a surprising affect

– Analyzer shows more frequent IN tokens
when connected through a hub.

– Synchronous transfers are faster
– Asynchronous transfers slightly

slower
➢ The hub's Transaction Translator

(TT) is affecting the performance

musb Results (OUT Transfers)

64

512

1024

65536

0 10 20 30 40 50 60 70 80

Idle Sync

Idle Async

Load (Device) Sync

Load (Device) Async

Load (Host) Sync

Load (Host) Async

Mbit/sec

Transfer
Size

EG20T Results (OUT Transfers)

64

512

1024

65536

0 50 100 150 200 250 300

Idle Sync
Idle Async
Load (Device) Sync
Load (Device) Async
Load (Host) Sync
Load (Host) Async
Idle Fast Sync
Idle Fast Async

Mbit/sec

Transfer
Size

Results

● musb/EG20T (OUT) Analysis
● musb does one DMA transfer

per USB transaction.
● musb OUT Performance tops out with

512-byte transfers
➢ Endpoint size is 512.

● EG20T OUT performance scales
similarly to IN performance.

● Hub numbers are similar but
slightly slower (see spreadsheet)

PIC32MX Results (OUT Transfers)

32

64

512

1024

65536

0 1 2 3 4 5 6 7 8 9

Idle Sync

Idle Async

Load (Host) Sync

Load (Host) Async

Mbit/sec

Transfer
Size

PIC32MX Results (OUT TRF with hub)

32

64

512

1024

65536

0 1 2 3 4 5 6 7 8 9

Idle Sync

Idle Async

Load (Host) Sync

Load (Host) Async

Mbit/sec

Transfer
Size

Results

● PIC32MX (Output) Analysis
● OUT transfers are affected by the hub the same

way IN transactions are
● Speed is comparable to IN transfers

Further
Optimizations

Isochronous Endpoints

● Features
● Un-acknowledged, non-guaranteed
● Bandwidth reserved
● Up to 3x1024 bytes per 125us microframe

– 3072 bytes/μframe: 196 Mbit/sec per endpoint

● Issues
● Requires AlternateSetting

– Not supported by functionfs
● Bandwidth must be available

Multiple Endpoints

● Using multiple bulk endpoints can increase
performance.
– All endpoints and devices share bus time
– If bottleneck is DMA, extra concurrency could

increase performance.
– More complex to manage.
– Depends also on host scheduling.

High-Bandwidth Interrupt

● High-speed Interrupt endpoints at > 1024 bytes
● Can go as high as 3072
● Reserved Bandwidth
● Acknowledged
● AlternateSetting required
● Bus bandwidth must be available

– Device will fail to enumerate or
change AlternateSetting if
bandwidth is not available.

Common Pitfalls

Common Pitfalls

● HID
● Based on Interrupt Transfers.
● Host will poll interrupt endpoints at up to

once per 1ms frame at full speed.
● Interrupt transfers at full speed can be

up to 64 bytes in length.
● Simple math is 64,000 bytes/sec

– Good enough for many applications
● Except....

Common Pitfalls

● HID
● … Except you don't always get it! Many hosts

don't actually poll you that often!
– 2-4 frames is much more realistic

(sometimes worse!)
– Some write synchronous protocols with HID

● Those are even slower!
– 2-4 frames for data, 2-4 frames for

acknowledgement!
● 8 kB/sec in this case

● Use Bulk/Isoc endpoints!
– Use libusb on the host side

Common Pitfalls

● Serial Gadget
● The f_serial gadget function creates /dev/ttyGSn

nodes.
– Data is written/read to/from these nodes

from the gadget/device side.
– Since the data goes through the tty

framework, it is broken into small
transfers.

– Performance is suboptimal, but ease
of use is high.

Tracepoint
Analysis

Tracepoints

● The kernel provides a tracing mechanism
called ftrace.

– Tracepoints are placed in source code
– Enabled/disabled at runtime
– Tracepoints can log data

– trace-cmd utility to log data

– kernelshark GUI to view/analyze it

– Useful for finding latencies

Tracepoints

● Available Tracers
● Additional tracers need to be enabled in
menuconfig
– Log every kernel function
– Log max call stack size
– Trace system calls
– Scheduling latency
– Others...

KernelShark

● GUI for trace analysis
● Graphically show tracepoints

– Per-CPU
– Per-process

● Show tracepoint data
● Complex filtering

– By process, CPU, event type or name
● Excellent documentation

– http://people.redhat.com/srostedt/kernelshark/HTML/

Tracepoints

● musb driver was modified to add tracepoints
● Declare tracepoints:

– musb-trace.h
● Call tracepoint functions (with data):

– musb_gadget.c
– musbhsdma.c

KernelShark

Filtered for musb

Tracepoints

● Results
● Results show the latency involved in the

context switch.
– Along with DMA overhead, another

reason to use large transfers.

Lessons Learned

● Gadget interface is Fragile
● Functionfs doesn't support AltSettings

● No Isochronous endpoints
● No high-bandwidth Interrupt endpoints

● Performance is host-dependent
● Hubs

● Can have strange effects
● Some good, some bad.

Alan Ott
alan@signal11.us
www.signal11.us

+1 407-222-6975 (GMT -5)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

