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Motivation

Development Tools

 Source Code Management – about maintaining source code

 IDE or simply Editors – about development

 Build Framework – about reliable builds



  

Motivation

Requirements for embedded build systems:

 Automated builds

 Efficient development

Intended Audience

 Industrial Embedded Linux Developers



  

Motivation

Specific requirements for Industrial Embedded Linux Developers

 Reproducible builds

 Long term maintenance

 Development in distributed teams

 Support platform strategies

 Open Source specific: Care about licences
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Basic Concepts

How to build an Embedded Linux Software System?

 Build a toolchain

 Build a kernel

 Build system software and libraries

 Build product specific software

 Compose things, usually into a kernel image and a root-
filesystem image, ready to deploy

Component Based Software Engineering



  

Basic Concepts

The basic composition process

ComponentComponent
Composition
process
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Basic Concepts

Cascading composition processes

Toolchain

Kernel Image

Root
Filesystem
Image
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Design and Implementation

Translating abstract terms into implementation terms

Composition translates into build process

Components are called 

 Sources and dependencies when talking about build process 
input

 Results when talking about build process output

ComponentComponent
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process
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Design and Implementation

The build process

Build Process
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Design and Implementation

The build process

 Setup the build environment

 extract  tarballs



  

Design and Implementation

The build process

 Copy things into the build environment

 Sources,

 Dependencies

 Install the build configuration

 Build script

 Shell environment

 Build script library



  

Design and Implementation

The build process

 Build

 Change the root directory to the build 
environment (chroot())

 Run the build script

 The build script leaves the build output in 
a directory



  

Design and Implementation

The build process

 Store the result

 Fetch the resulting files from the build 
environment

 Create the result package

 Store the result to the server



  

Design and Implementation

BuildId - Know what you build in advance

 Before building we calculate a cryptographic hash over any of the 
process inputs (sources, dependencies, build environment,...)

 We call that hash BuildId

 e2 factory stores results accessible through the BuildId



  

Design and Implementation

Build Cache

 Rebuilding is only done when any process input changed

 Results can be stored on a shared server

 They are available across multiple developers immediately

 Dependency tracking is fully automated and reliable

...unless the unlikely case of a hash collision happens. We use the sha1 hash algorithm which we think is 
strong enough to minimize risk here.



  

Design and Implementation

Reproducibility and Long Term Maintenance

 Industrial Embedded Systems need maintenance for many years

 Reproducibility is mandatory requirement to allow long term 
maintenance



  

Design and Implementation

Reproducibility and Long Term Maintenance

 e2 factory is split into

 global tools, installed system wide

 local tools, installed within each project environment

 Set of global tools 

 is small

 maintains compatibility to former generations of local tools

 Local tools control the build process

 Version of local tools is locked to each single project



  

Design and Implementation

Reproducibility and Long Term Maintenance

 The project configuration is maintained within a Source Code 
Management System

 Sources are taken from

 a SCM System

 archive files and patches



  

Design and Implementation

Reproducibility and Long Term Maintenance

 The same, stable build environment is used

 by all developers during development

 in release builds

 Each build process runs in a fresh build environment

 Building is done with the root directory changed to the build 
environment

 host system independence

 build processes do not influence each other



  

Design and Implementation

Working in Teams – local or distributed

e2 factory is a distributed system and offers high flexibility

 Developers can share build results by automatically pushing 
them to a central server

 No more repeated builds across the team, results are looked up 
by their BuildId and reused

 A local cache can be used, for performance reasons



  

Design and Implementation

Working detached (or with limited network bandwidth)

e2 factory is flexible enough to support detached work

 The local cache can be filled in advance with relevant data

 Building and development does not require a network connection 
in this case

There are limitations: e2 factory relies on SCM System access. 
Detached work requires a distributed Source Code Management 
System (git)
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Working with e2 factory

What does a e2 factory project look like?

 Basic configuration entities are

 Site configuration (system-wide, per user)

 Servers
 Policies

 Project

 Chroot
 Licence
 Environment
 Sources
 Results



  

Working with e2 factory

What does a e2 factory project look like?

 Basic configuration entities are

 Project

 Chroot
 Licence
 Environment
 Sources
 Results

e2source {
name = “busybox”,
licences = {

“gpl2”,
},
file = {

{
server = “upstream”,
location =\
   “busybox-1.15.0.tar.bz2”,
unpack = “busybox-1.15.0”,

},
},

}



  

Working with e2 factory

What does a e2 factory project look like?

 Basic configuration entities are

 Project

 Chroot
 Licence
 Environment
 Sources
 Results

e2source {
name = “busybox-config”,
file = {

{
server = “.”,
location =\

“src/busybox/busybox.config”,
copy = “busybox.config”,

},
},

}



  

Working with e2 factory

What does a e2 factory project look like?

 Basic configuration entities are

 Project

 Chroot
 Licence
 Environment
 Sources (git)
 Results

e2source {
licences = {

“gpl2”,
},
type = “git”,
server = “git”,
location = “linux-2.6.git”,
branch = “master”,
tag = “v2.6.31”,

}



  

Working with e2 factory

What does a e2 factory project look like?

 Basic configuration entities are

 Project

 Chroot
 Licence
 Environment
 Sources
 Results

 Configuration
 Build script

e2result {
name = “busybox”,
chroot = {

“base”,
},
depends = {

“toolchain”,
},
sources = {

“busybox”,
“busybox-config”,

},
}



  

Working with e2 factory

What does a e2 factory project look like?

 Basic configuration entities are

 Project

 Chroot
 Licence
 Environment
 Sources
 Results

 Configuration
 Build script

cd busybox
cp ../busybox-config/busybox.config \

 .config
make ARCH=${cross_arch} \

CROSS_COMPILE=${target_platform}-
make ARCH=${cross_arch} \

CROSS_COMPILE=${target_platform}- \
CONFIG_PREFIX=${ROOT} install

tar -czf ${OUT}/busybox.tar.gz \
-C ${ROOT} .



  

Working with e2 factory

What does a e2 factory project look like?

 Basic configuration entities are

 Project

 Chroot
 Licence
 Environment
 Sources
 Results

 Configuration
 Build script

e2result {
name = “rootfs”,
chroot = {

“base”,
},
depends = {

“libc”,
“busybox”,
“zlib”,

},
sources = {
},

}



  

Working with e2 factory

What does a e2 factory project look like?

 Basic configuration entities are

 Project

 Chroot
 Licence
 Environment
 Sources
 Results

 Configuration
 Build script

tar -xzf ${DEP}/busybox/busybox.tar.gz\
-C ${ROOT}

tar -xzf ${DEP}/zlib/zlib.tar.gz\
-C ${ROOT}

tar -czf ${OUT}/rootfs.tar\
-C ${ROOT} .



  

Working with e2 factory

Basic use cases

 Reproducible Builds

 Development

$ e2-build busybox
skipping binutils  [abcdef...]
skipping gcc       [5176ab...]
skipping libc      [123abc...]
...
skipping toolchain [443456...]
building busybox   [456123...]
$ 



  

Working with e2 factory

Basic use cases

 Reproducible Builds

 Development

 The playground, a shell inside the build environment

$ e2-build --playground busybox
building busybox   [456123...][playground]

$ e2-playground busybox
entering playground...
# 



  

Working with e2 factory

An approach to platform based development

 Maintain a common platform for multiple products

 Keep development close together

 share as much as possible

 Keep the products independent enough

 different product life-cycles



  

Working with e2 factory

An approach to platform based development

 The generic part has well-defined interfaces for product 
development

Toolchain

Kernel Image

Root
Filesystem



  

Working with e2 factory

An approach to platform based development

 Products depend on the generic platform

 Products represented by results

Generic
Root
Filesystem

A

Toolchain

B

Product
Specific
Root
Filesystem
Images

Kernel Image



  

Working with e2 factory

An approach to platform based development

 Project is self-contained

 Toolchain included

 Fully automated dependency handling

 Rebasing products onto different hardware is easy

 Required due to discontinued hardware or

 Growing hardware requirements



  

Thank you for
your attention!

www.e2factory.org

e2factory@emlix.com
www.emlix.com

http://www.e2factory.org/
mailto:e2factory@emlix.com
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