

e2 factory
the emlix Embedded
Build Framework

Agenda

 Motivation

 Basic Concepts

 Design and Implementation

 Working with e2 factory

e2 factory
Motivation

Motivation

Development Tools

 Source Code Management – about maintaining source code

 IDE or simply Editors – about development

 Build Framework – about reliable builds

Motivation

Requirements for embedded build systems:

 Automated builds

 Efficient development

Intended Audience

 Industrial Embedded Linux Developers

Motivation

Specific requirements for Industrial Embedded Linux Developers

 Reproducible builds

 Long term maintenance

 Development in distributed teams

 Support platform strategies

 Open Source specific: Care about licences

e2 factory
Basic Concepts

Basic Concepts

How to build an Embedded Linux Software System?

 Build a toolchain

 Build a kernel

 Build system software and libraries

 Build product specific software

 Compose things, usually into a kernel image and a root-
filesystem image, ready to deploy

Component Based Software Engineering

Basic Concepts

The basic composition process

ComponentComponent
Composition
process

n

Basic Concepts

Cascading composition processes

Toolchain

Kernel Image

Root
Filesystem
Image

e2 factory
Design and Implementation

Design and Implementation

Translating abstract terms into implementation terms

Composition translates into build process

Components are called

 Sources and dependencies when talking about build process
input

 Results when talking about build process output

ComponentComponent
Composition
process

n

Design and Implementation

The build process

Build Process

Source

Dependency Result

Build
Configuration

Build
Environment

Build Process

Source

Dependency Result

Build
Configuration

Build
Environment

Design and Implementation

The build process

 Setup the build environment

 extract tarballs

Design and Implementation

The build process

 Copy things into the build environment

 Sources,

 Dependencies

 Install the build configuration

 Build script

 Shell environment

 Build script library

Design and Implementation

The build process

 Build

 Change the root directory to the build
environment (chroot())

 Run the build script

 The build script leaves the build output in
a directory

Design and Implementation

The build process

 Store the result

 Fetch the resulting files from the build
environment

 Create the result package

 Store the result to the server

Design and Implementation

BuildId - Know what you build in advance

 Before building we calculate a cryptographic hash over any of the
process inputs (sources, dependencies, build environment,...)

 We call that hash BuildId

 e2 factory stores results accessible through the BuildId

Design and Implementation

Build Cache

 Rebuilding is only done when any process input changed

 Results can be stored on a shared server

 They are available across multiple developers immediately

 Dependency tracking is fully automated and reliable

...unless the unlikely case of a hash collision happens. We use the sha1 hash algorithm which we think is
strong enough to minimize risk here.

Design and Implementation

Reproducibility and Long Term Maintenance

 Industrial Embedded Systems need maintenance for many years

 Reproducibility is mandatory requirement to allow long term
maintenance

Design and Implementation

Reproducibility and Long Term Maintenance

 e2 factory is split into

 global tools, installed system wide

 local tools, installed within each project environment

 Set of global tools

 is small

 maintains compatibility to former generations of local tools

 Local tools control the build process

 Version of local tools is locked to each single project

Design and Implementation

Reproducibility and Long Term Maintenance

 The project configuration is maintained within a Source Code
Management System

 Sources are taken from

 a SCM System

 archive files and patches

Design and Implementation

Reproducibility and Long Term Maintenance

 The same, stable build environment is used

 by all developers during development

 in release builds

 Each build process runs in a fresh build environment

 Building is done with the root directory changed to the build
environment

 host system independence

 build processes do not influence each other

Design and Implementation

Working in Teams – local or distributed

e2 factory is a distributed system and offers high flexibility

 Developers can share build results by automatically pushing
them to a central server

 No more repeated builds across the team, results are looked up
by their BuildId and reused

 A local cache can be used, for performance reasons

Design and Implementation

Working detached (or with limited network bandwidth)

e2 factory is flexible enough to support detached work

 The local cache can be filled in advance with relevant data

 Building and development does not require a network connection
in this case

There are limitations: e2 factory relies on SCM System access.
Detached work requires a distributed Source Code Management
System (git)

e2 factory
Working with e2factory

Working with e2 factory

What does a e2 factory project look like?

 Basic configuration entities are

 Site configuration (system-wide, per user)

 Servers
 Policies

 Project

 Chroot
 Licence
 Environment
 Sources
 Results

Working with e2 factory

What does a e2 factory project look like?

 Basic configuration entities are

 Project

 Chroot
 Licence
 Environment
 Sources
 Results

e2source {
name = “busybox”,
licences = {

“gpl2”,
},
file = {

{
server = “upstream”,
location =\
 “busybox-1.15.0.tar.bz2”,
unpack = “busybox-1.15.0”,

},
},

}

Working with e2 factory

What does a e2 factory project look like?

 Basic configuration entities are

 Project

 Chroot
 Licence
 Environment
 Sources
 Results

e2source {
name = “busybox-config”,
file = {

{
server = “.”,
location =\

“src/busybox/busybox.config”,
copy = “busybox.config”,

},
},

}

Working with e2 factory

What does a e2 factory project look like?

 Basic configuration entities are

 Project

 Chroot
 Licence
 Environment
 Sources (git)
 Results

e2source {
licences = {

“gpl2”,
},
type = “git”,
server = “git”,
location = “linux-2.6.git”,
branch = “master”,
tag = “v2.6.31”,

}

Working with e2 factory

What does a e2 factory project look like?

 Basic configuration entities are

 Project

 Chroot
 Licence
 Environment
 Sources
 Results

 Configuration
 Build script

e2result {
name = “busybox”,
chroot = {

“base”,
},
depends = {

“toolchain”,
},
sources = {

“busybox”,
“busybox-config”,

},
}

Working with e2 factory

What does a e2 factory project look like?

 Basic configuration entities are

 Project

 Chroot
 Licence
 Environment
 Sources
 Results

 Configuration
 Build script

cd busybox
cp ../busybox-config/busybox.config \

 .config
make ARCH=${cross_arch} \

CROSS_COMPILE=${target_platform}-
make ARCH=${cross_arch} \

CROSS_COMPILE=${target_platform}- \
CONFIG_PREFIX=${ROOT} install

tar -czf ${OUT}/busybox.tar.gz \
-C ${ROOT} .

Working with e2 factory

What does a e2 factory project look like?

 Basic configuration entities are

 Project

 Chroot
 Licence
 Environment
 Sources
 Results

 Configuration
 Build script

e2result {
name = “rootfs”,
chroot = {

“base”,
},
depends = {

“libc”,
“busybox”,
“zlib”,

},
sources = {
},

}

Working with e2 factory

What does a e2 factory project look like?

 Basic configuration entities are

 Project

 Chroot
 Licence
 Environment
 Sources
 Results

 Configuration
 Build script

tar -xzf ${DEP}/busybox/busybox.tar.gz\
-C ${ROOT}

tar -xzf ${DEP}/zlib/zlib.tar.gz\
-C ${ROOT}

tar -czf ${OUT}/rootfs.tar\
-C ${ROOT} .

Working with e2 factory

Basic use cases

 Reproducible Builds

 Development

$ e2-build busybox
skipping binutils [abcdef...]
skipping gcc [5176ab...]
skipping libc [123abc...]
...
skipping toolchain [443456...]
building busybox [456123...]
$

Working with e2 factory

Basic use cases

 Reproducible Builds

 Development

 The playground, a shell inside the build environment

$ e2-build --playground busybox
building busybox [456123...][playground]

$ e2-playground busybox
entering playground...

Working with e2 factory

An approach to platform based development

 Maintain a common platform for multiple products

 Keep development close together

 share as much as possible

 Keep the products independent enough

 different product life-cycles

Working with e2 factory

An approach to platform based development

 The generic part has well-defined interfaces for product
development

Toolchain

Kernel Image

Root
Filesystem

Working with e2 factory

An approach to platform based development

 Products depend on the generic platform

 Products represented by results

Generic
Root
Filesystem

A

Toolchain

B

Product
Specific
Root
Filesystem
Images

Kernel Image

Working with e2 factory

An approach to platform based development

 Project is self-contained

 Toolchain included

 Fully automated dependency handling

 Rebasing products onto different hardware is easy

 Required due to discontinued hardware or

 Growing hardware requirements

Thank you for
your attention!

www.e2factory.org

e2factory@emlix.com
www.emlix.com

http://www.e2factory.org/
mailto:e2factory@emlix.com

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41

