
 Copyright 2010 Sony Corporation

Improving Android
Bootup Time

Tim Bird
Sony Network Entertainment, Inc.

<tim.bird (at) am.sony.com>

 Copyright 2010 Sony Corporation

Overview
 Android boot sequence
 Measuring bootup time
 Problem areas

̵ Including some gory details

 Ideas for improvements
 Conclusions
 Resources

 Copyright 2010 Sony Corporation

Android Boot Sequence

• Bootloader
• Kernel
• Init

̵ Loads several daemons and services,
including zygote

̵ See /init.rc and /init.<platform>.rc
• Zygote

̵ Preloads classes
̵ Starts package manager

• Service manager
̵ Starts services

 Copyright 2010 Sony Corporation

Measuring boot time

• Systems Measured
̵ Android Developer Phone (ADP1)

• Qualcomm MSM7201 at 528 MHz with 192M RAM
• Running Donut (1.6)

̵ Nexus 1
• Qualcomm 8250 at 1 GHz with 512 RAM
• Running Eclair (2.1)

̵ OMAP Evaluation Module
• TI OMAP 3530 at 600 MHz with 128M RAM
• Running Eclair
• !! Using NFS-mounted root filesystem !!

Tools used

• Stopwatch
̵ It's kind of sad that it takes so long that you

can use a stopwatch
• Message loggers

̵ Grabserial
̵ Printk times
̵ Android system log

• Bootchart
• Strace
• Dalvik method tracer*
• Ftrace*

 Copyright 2010 Sony Corporation

Grabserial

• Tool for measuring time of printouts on a
serial port, from a host machine
̵ Only useful with EVM board, which has serial

console

• Shows timestamp for each line received
over serial console

• See http://elinux.org/Grabserial

 Copyright 2010 Sony Corporation

Printk-times

• Kernel option for adding time stamp to each printk
̵ Set CONFIG_PRINTK_TIME=y
̵ Option is on "Kernel hacking" menu, "Show timing

information on printks"

• Can save view on serial console, or after boot with
‘dmesg’

• Can turn on 'initcall_debug' on kernel command line
• See http://elinux.org/Printk_Times
• Init program also outputs to /dev/kmsg

̵ Can adjust loglevel of 'init' program
• Change “loglevel 3” to “loglevel 7” in /init.rc

Bootchart

• 'init' gathers data on startup
̵ Must re-compile 'init' with support for bootchart

data collection

• A tool on the host produces a nice graphic

• See http://elinux.org/Bootchart and
http://elinux.org/Using_Bootchart_on_Android

Strace

• Shows system calls for a process (or set of
processes)

• Is part of AOSP since Eclair
• Can add to init.rc to trace initialization.

̵ For example, to trace zygote startup, in /init.rc
change:

 to
service zygote /system/xbin/strace -tt -o/data/boot.strace /system/bin/app_process -Xzygote
 /system/bin --zygote --start-system-server

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server

Android system log

• Android has built-in logging system
• Use ‘logcat’ command to view messages
• I added extra instrumentation for class

preloading and package scanning
• I also set PARSE_CHATTY flag for

package scanning
• I built my own tool (logdelta) to scan log

and produce 'delta' times

Dalvik method tracer

• Method tracer is built into Dalvik
• Can be activated with ddms or using calls

inside source
• Unfortunately, it didn’t work on the EVM

platform, due to a problem with the clock
• Would be problematical for boot anyway,

since thread of execution goes outside of
Java (into C++ and kernel) for lots of
important operations

Ftrace

• I could have really used ftrace for some
things
̵ Like to see page faults intermingled with

system calls

• Kernel version for EVM (2.6.29) didn’t
support it

• Should be usable in future version of
Android (Froyo is at 2.6.32)

• NOTE: ARM is missing function graph
tracing
̵ But there’s a fix
̵ See http://elinux.org/Ftrace_Function_Graph_ARM

Measurement results

• Stopwatch
• Grabserial
• Printk times
• Strace
• Bootchart
• Logcat

Stopwatch results

Platform Time to
static
splash
screen

To
animated
splash

To home
screen

Number
of apps

ADP1 4 32 57 39

Nexus 1 3.5 20 36 79

EVM 17* 37 62 45

NOTES: All times in seconds.
 *EMV used a development bootloader, with high overhead and delays

 Copyright 2010 Sony Corporation

Printk-times results

• ADP1 kernel boot time

̵ 6.2 second kernel boot

• EVM kernel boot time

̵ Clock not re-initialized at bootup
̵ Have to diff end time with first reported time
̵ 6.2 second kernel boot

[6.276367] Freeing init memory: 116K

[44935.943115] OMAP DMA hardware revision 4.0
….
[44942.164093] VFS: Mounted root (nfs filesystem) on device 0:12.
[44942.170196] Freeing init memory: 164K

 Copyright 2010 Sony Corporation

Initcall_debug results

• Interesting init_calls:
̵ ip_auto_config = 1.51 seconds
̵ ehci_hcd_init = .1 seconds

• Usually more on real hardware
̵ Various omap init routines = .86 seconds

 77515 usecs - initcall omap_kp_init+0x0/0x1c returned 0
 99152 usecs - initcall ehci_hcd_init+0x0/0xa4 returned 0
 106334 usecs - initcall omap3evm_soc_init+0x0/0x9c returned 0
 107079 usecs - initcall inet_init+0x0/0x1dc returned 0
 115603 usecs - initcall omap_mmc_init+0x0/0x1c returned 0
 148236 usecs - initcall omapfb_init+0x0/0x34 returned 0
 154584 usecs - initcall omap_nand_init+0x0/0x30 returned 0
 269770 usecs - initcall clk_disable_unused+0x0/0x8c returned 0
 1514553 usecs - initcall ip_auto_config+0x0/0xdbc returned 0

 Copyright 2010 Sony Corporation

Bootchart results

 Copyright 2010 Sony Corporation

Bootchart closeup

 Copyright 2010 Sony Corporation

Regions of interest

• Area 1 = kernel init
̵ Approx. 8 seconds in this chart

• Area 2 = zygote class preloading
̵ From approx. 8 to 29 seconds into boot

• 21 seconds
• Area 3 = PackageManager package

scanning
̵ From approx 29 to 50 seconds into boot

• 21 seconds
• Area 4 = System Services starting

̵ From approx. 50 to 59 seconds into boot
̵ 9 seconds

 Copyright 2010 Sony Corporation

Logcat results

• ADP1:
̵ preloaded 1514 classes in 11530ms
̵ Time to scan packages: 10.064 seconds

• N1:
̵ preloaded 1942 classes in 5360ms
̵ Time to scan packages: 8.975 seconds

• EVM:
̵ preloaded 1942 classes in 13619ms
̵ Time to scan packages: 19.731 seconds

Problem Areas

• Bootloader init
• Kernel init
• Zygote class preloading
• Package scanning
• Service initialization

Bootloader init

• Outside scope of this talk
• Didn't measure commercial bootloader,

only development one (U-boot)
• Is contained within first 4 seconds on

phones (I think)

Kernel Init

• Is mostly the usual suspects
̵ ip_auto_config
̵ USB (ehci, ohci) init
̵ OMAP flash and driver initialization

• See initcall_debug results
• Just follow standard instructions for

optimizing initcalls in the kernel
̵ See http://elinux.org/Boot_Time

• Some of this is board-specific
̵ Depends on your flash controller
̵ Is outside scope of this talk

Zygote class preloading

• Zygote pre-loads just under 2000 classes,
and instantiates them in its heap

• Controlled by resource: preloaded-classes
• Which comes from source:

̵ frameworks/base/preloaded-classes
• Google developers say you can adjust this

as much as you like
̵ Android can boot without preloading any

classes
̵ Can add or remove individual classes

• I found that AutoText took 4 seconds to load
̵ HOWERVER – it can result in bad application

load times and memory usage later

Package manager package scan

• EVERY package is scanned at boot time
• Very deep nesting, with abstraction
• Not sure of exact set of purposes

̵ But I see validation of certificates,
permissions, capabilities and
dependencies, etc.

• Very difficult to trace
̵ It bounces between java, c++ and kernel
̵ And uses mmaped files (meaning

accesses cause page faults)!!
• So it's not even using syscalls for reading

the data

Package scan call tree
 callstatic("com/android/server/SystemServer","init2")
 init2()
 main(context, factoryTest)
 PackageManagerService(context, factoryTest)
 scanDirLI(dir, flags, mode)
 scanPackageLI(file, file resfile, flags, mode)

 parsePackage(file, dest filename, metrics, flags)
 parsePackage(file, dest, metrics, flags)
 openXmlResourceParser(cookie, filename) (“AndroidManifest.xml“)
 openXmlBlockAsset(cookie, filename)
 openXmlAssetNative(cookie, filename)
 android_content_AssetManager_openXmlAssetNative
 openNonAsset(cookie, filename, flag)
 openNonAssetInPathLocked(filename, mode, asset_path)
 getZipFileLocked(asset_path)
 getZip(ap.path)
 get(path)
 getZip()
 SharedZip(path, modWhen)

 ZipFileRO::open(path)
 parseZipArchive(void)

 get4LE(ptr)
 (memory access)

parseZipArchive()

• Evil routine that builds an in-memory data
structure for accessing a package file

• Scans the entire package, checking the
content headers
̵ Caused read of almost entire package
̵ Touches every page in mmaped file, even if a

sub-file in the archive won't be read later
̵ i.e. Entire package file is read, when only the

AndroidManifest.xml file is requested

Ideas for Improvements

• First, a side note on toothpaste..
• Kernel speedups
• Optimize package scan
• Optimize class preloading
• Miscellaneous optimizations
• Readahead??

Toothpaste

 When you squeeze a tube of toothpaste,
sometimes it just moves the toothpaste
somewhere else in the tube, and nothing
actually comes out.

• Same with optimizations:
̵ Reduction in one area causes problem (speed

or size) in some other area

Toothpaste (cont.)

• “Toothpaste effect” is demonstrated with
class preloading and page cache effects

• I tried to improve things
̵ But the I/O delays just moved somewhere else

in the system
̵ Sometimes making things worse
̵ AutoText class preload example:

o Eliminated preload of AutoText class and gained 4
seconds during class preloading, but
/system/frameworks/frameworks-res.apk was just loaded
later in the boot, costing 4 seconds there

̵ Contacts.apk package scan example:
o Moved AndroidManifest.xml to its own package, to avoid

reading the entire (1.6M) package to build the package
index, but next reference of Contacts.apk contents caused
the index rebuild again (costing the entire page cache
load)

Kernel speedups

• Outside the scope of this presentation
• See http://elinux.org/Boot_Time
• Should really be able to get kernel up in 1

second
̵ Modulo network delays

Optimize Class Preloading

• Preload less, and let apps pay penalty for shared
class and resource use
̵ Move some classes to services, and have preloaded

class be an accessor stub
̵ Figure out how to share heap back with zygote
̵ This needs a lot of analysis - Google Android devs

know that the whole process of selecting what classes
to preload is a black art

• Thread the heap construction
̵ There is some evidence that class preloading has I/O

waits, and would benefit from threading
̵ Don't know if this is possible
̵ NOTE: all threads need to terminate before spawning

Android apps

Use pre-constructed dalvik heap

• Basic operation:
̵ Snapshot the heap at end of preloading
̵ Check for modifications to any class in preload

list, and do regular preload
̵ Otherwise, load pre-constructed heap

• Issues:
̵ Don't know if this is possible

• Need to find parts of heap that are identical on each
boot

• Probably need separate "always-the-same" and
"may-change" classes

̵ Need careful analysis, and might need
knowledge of each class

Optimize Package Scan

• Most definitely! This should be first thing
attacked

• I tried first order optimization
̵ Removed per-file signature check in

parseZipArchive()
̵ This reduced duration of this routine

(cumulative for 138 calls) by several seconds
̵ But… total boot time was not reduced (!!)

• Toothpaste effect strikes again!

• Need to continue analysis
̵ May need to switch to a compressed flash file

system, instead of managing indexing and
compression in user space.

Miscellaneous

• zoneinfo inefficiences
̵ Discovered with strace
̵ Routine that does read syscall for 40 bytes,

then 8 bytes, then another 8 bytes (hundreds
of times)

• No buffering at user level
• Sloppy loop coding

̵ Linear scan of timezone file
• For a file not present!!

̵ Probably only a few hundred milliseconds, but
worth changing

readahead??

• One developer had an interesting result
from just pre-filling the page cache

• Could use sreadahead to pre-fill page
cache

• However, this just masks bad behavior
̵ Contacts.apk (half of 1.6M) is read 4 times!

during boot
̵ Filling page cache makes reads after first one

fast, but it would be better to avoid (most of)
the reads altogether

• Would be better to just optimize or eliminate
parseZipArchive()

• sreadahead should be used dead last
(after all other enhancements)

Conclusions

• Sorry - no speedups yet
• But, have a good foundation and set of

tools for improving things going forward
̵ Good idea of where time is spent

Observations

• “Premature optimization is the root of all evil”
̵ Be very careful of optimizing wasteful operations
̵ Better to improve or eliminate the operations, than

hide the wasteful operations with caching

• Beware of systemic or architectural problems
̵ Package management basically builds a persistent

container and compression architecture in user space
̵ Except, it does it poorly. (It rebuilds the in-memory

data structure for indexing an archive over and over.)
̵ Just use a file system, for heaven's sake!

Resources

• Wiki page for this talk:
http://elinux.org/Improving_Android_Boot_Time

• Use android-porting, android-platform, and
android-kernel mailing lists, depending on
where your issue is
̵ See
http://elinux.org/Android_Web_Resources#Mailing_Lists

• My e-mail: tim.bird (at) am.sony.com

Thanks for your time

Questions and Answers

	Improving Android Bootup Time
	Overview
	Android Boot Sequence
	Measuring boot time
	Tools used
	Grabserial
	Printk-times
	Bootchart
	Strace
	Android system log
	Dalvik method tracer
	Ftrace
	Measurement results
	Stopwatch results
	Printk-times results
	Initcall_debug results
	Bootchart results
	Bootchart closeup
	Regions of interest
	Logcat results
	Problem Areas
	Bootloader init
	Kernel Init
	Zygote class preloading
	Package manager package scan
	Package scan call tree
	parseZipArchive()
	Ideas for Improvements
	Toothpaste
	Toothpaste (cont.)
	Kernel speedups
	Optimize Class Preloading
	Use pre-constructed dalvik heap
	Optimize Package Scan
	Miscellaneous
	readahead??
	Conclusions
	Observations
	Resources
	Thanks for your time

