hriting your owh kernel crypto
accelerator driver

For ELC-E 2020
Tero Kristo @ TI

W3 TExAS INSTRUMENTS

Who am |

» Worked 9 years for Texas Instruments on Linux kernel development
e Lead for Tl baseport team for ~5 years

* About 600 patches merged upstream
- About 60 of these in crypto drivers

* Maintainer for couple of Tl related drivers/subsystems in upstream
Linux

e Linkedin: https://www.linkedin.com/in/tero-kristo-49068a/

2

Wip TEXAS INSTRUMENTS

Contents

1. Introduction
2. Implementation details
3. Testing

3

W3 TExAS INSTRUMENTS

1. Introduction

4

W3 TExAS INSTRUMENTS

Cryptography overview

 What is cryptography?
- Relatively complex mathematical algorithms to convert data into something
unintelligible

 Why cryptography?
- Authentication (no spoofing of identity)

- Confidentiality (no eavesdropping)
- Integrity (no tampering of data)

e Different algorithms for different use-cases

5

Wip TEXAS INSTRUMENTS

Authentication

 Asymmetric ciphers
- RSA, DSA etc.
- Has two keys, private and public
- Public key can be shared freely
* Applications: digital signing, secure
boot etc.

Sender *

- Encrypt

-

Receiver

6

W3 TExAS INSTRUMENTS

Confidentiality

 Symmetric ciphers

- AES, DES etc.

- Much faster than asymmetric ones
* Private key

- Must be shared somehow secretly

» Applications: HDD encryption,
secure messaging, IPSec etc.

Sender

» Encrypt

» Decrypt

Receiver

7

W3 TExAS INSTRUMENTS

Integrity

* Hash algorithms

- MD5, SHA etc.
» Applications: image integrity Encrypt
checking, password storage etc.

* Impossible to generate original data ﬁ

from ciphertext

8

W3 TExAS INSTRUMENTS

2. Implementation

9

W3 TExAS INSTRUMENTS

Simplified system architecture

10

W3 TExAS INSTRUMENTS

Crypto API driver level concepts

e Transform
- A single algorithm implementing a cryptographic operation
- Either a hash, cipher, compression or random number generator (or AEAD)
- Initialized/removed via the cra_init / cra_exit calls

* Request

- A single crypto handling request containing data (might be zero length) to
be processed

- Single transform provides a few operations with whom the requests get
processed

- Results are typically provided back via asynchronous completion

» Both provide their contexts for driver level data storage
- Don’t mix up these two

* Their lifetime is also different 1

W3 TExAS INSTRUMENTS

High Ievel ii

nrl

to sequence

——ISFB-be—h

< request

——complete-»
T teey —m
-complete »

<«—gpen
-—sentd——

- send

— Teev— »

Egram

12

W3 TExAS INSTRUMENTS

Kernel APIs for creating a new algorithm

 int crypto_register skcipher(struct skcipher _alg *alg)
- For symmetric ciphers like AES, 3DES

 int crypto_register _ahash(struct ahash_alg *alg)
- For hash algorithms: SHA1, SHA2 etc.

* int crypto _register aead(struct aead _alg *alq)
- For AEAD algorithms which are combined suites like SHA256 + AES
(authenc(hmac(sha256),cbc(aes)))

* Plenty of others available also, but these are the ones we are
interested in this presentation

* Once proper register function has been selected, just need to fill the
*alg container

13

Wip TEXAS INSTRUMENTS

Hash operations

* Hash needs to register following driver APIs via the cookie
* init(struct ahash _req *req)
- Initialize HW, hash state, internal data

* update(struct ahash_req *req)
- Send new data to accelerator

e final(struct ahash_req *req)
- Close current hash and return the result

* digest(struct ahash_req *req)
- Combination of init/update/final

» export(...) + import(struct ahash_req *req, void *data)
- Export current hash + status to continue it later

14

Wip TEXAS INSTRUMENTS

Hash notes

* Both export and import must be implemented
- This might be tricky on some hw, so may resort to SW fallback only

* Register proper statesize
- Using too small size will ensure strange problems with memory handling
- Using too large will get the algorithm rejected by the crypto core

» Use SW fallback for small payload sizes
- Setting up DMAs etc. can be expensive per packet
- Can provide pretty large performance boost in some use cases

e Data will be sent over in multiple chunks (repeated update
calls)
- Complex buffering may be needed to handle things properly

15

Wip TEXAS INSTRUMENTS

Cipher / AEAD operations

e cipher and AEAD need to register following via the cookie

e setkey(struct crypto {aead|skcipher]} *tfm, u8 *key, int keylen)
- Set the encryption key for the algorithm

* encrypt(struct {skcipher|aead} request *req)
- Encrypt a chunk of data

e decrypt(struct {skcipher|aead} request *req)
- Decrypt a chunk of data

» Additionally, AEAD needs to register this:

e setauthsize(struct crypto_aead *tfm, int authsize)
- Set the authentication data size for AEAD

16

Wip TEXAS INSTRUMENTS

Cipher / AEAD notes

* Register proper state/reqgsizes
- Similar to hashes, wrong sizes here induce difficult to debug problems

* Cipher typically easier to implement than hashes due to data being
sent over in single chunk

* With small payload, use SW fallback similar to hashing

17

Wip TEXAS INSTRUMENTS

Testing support

* Crypto self tests done by crypto core
- CONFIG_CRYPTO_MANAGER_DISABLE _TESTS=n (note inversion!)
- CONFIG_CRYPTO_MANAGER_EXTRA TESTS=y
- Results in the boot log if any failures seen
- /proc/crypto shows the status as unknown for any failed transforms
- tip: if testing hangs during boot, try adding timeout to the crypto_wait_req
to see what your driver was doing:
https://patchwork.kernel.org/patch/11195553/
* Crypto test module
- CONFIG_CRYPTO_TEST=m
- modprobe tcrypt.ko mode=<mod> sec=<sec>
- mode=600 for AES, mode=423 for SHA

18

Wip TEXAS INSTRUMENTS

Testing support (cont.)

* openssl testing
- via either AF_ALG or devcrypto
- e.g. openssl speed -evp aes256 -engine devcrypto
- For devcrypto, must have cryptodev.ko installed

* IPSec testing

- via e.g. strongswan suite
- use iperf3 or something similar on top to test throughput

19

Wip TEXAS INSTRUMENTS

Driver optimization tips

 Combine processing if possible
- Combine small data chunks to larger ones
- Combine multiple interrupts and process them in batches
- Combine multiple DMA xfers into single one

* Parallelism
- Queue multiple requests simultaneously to HW if possible

* SW fallback usage

- For small data chunks just execute the processing with SW fallback
algorithm

- Setting up DMA and processing the IRQ is expensive for small payloads

* Avoid scheduling

- If you have more data waiting when finalizing old one, attempt to queue
next chunk immediately (use crypto engine to do this automatically) 20

Wip TEXAS INSTRUMENTS

3. Test Results

21

W3 TExAS INSTRUMENTS

HW used

* Tested on couple of Tl platforms

s AM57xx EVM
- Cortex A15 x2 @ 1.5GHz
- ARMv7 architecture
- NEON acceleration (-neon drivers)
- TI OMAP family crypto IPs in use

e]721e EVM
- Cortex A72 x 2 @ 2GHz
- ARMvS8 architecture
- Crypto Extensions in use (-ce drivers)
- TI SA2UL crypto accelerator block

22

Wip TEXAS INSTRUMENTS

Testing done

» Tested both HW accelerated and SW mode crypto

e Tcrypt.ko testing
- Basic usage: modprobe tcrypt.ko mode=<mode> sec=1
- SHA256 and AES-ECB with multiblock mode (AES=600, SHA=423)
captured results for 128b key
Slightly modified
e Larger than normal block sizes used (upto 64K)

* CPU load measured additionally in all tests

23

Wip TEXAS INSTRUMENTS

Tcrypt results for AM57xx (1/2)

SHA-256-AMSE 7xx
250 — 120

e [Y0-OMAD
= 2 =mjpm coU-%-omap
- % bw-nean
w—ie= Cpu-%6-neon

PSP ST LIS

bs

24

W3 TExAS INSTRUMENTS

Tcrypt results for AM57xx (2/2)

ECB-AES-AMS57xx

< mnfe [YA-OMAD

E_ s CpU-35-0Map
E bw-neon

_ m—ie= ¢ pu-36-neon

16 B4 256 1024 1472 8192

16384 32768
bs

25

W3 TExAS INSTRUMENTS

Tcrypt results for }J7 (1/2)

SHAZ256-J7

mfie W-582
" g ==cpudh-sa2
- iy bw-ce
mgiy= cpU-h-cE
100 -
0

bs

26

W3 TExAS INSTRUMENTS

Tcrypt results for)7 (2/2)

ECB-AES-J7

2500 —

sl yV-582
" 2 g cpU-6-5a2
it 3-,- bw-ce
mgie cpU-Sh-ce

64 256 1024 1472 8192 163843276849152 66472

bs

27

W3 TExAS INSTRUMENTS

Thank you!

28

W3 TExAS INSTRUMENTS

