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Who am |

» Worked 9 years for Texas Instruments on Linux kernel development
e Lead for Tl baseport team for ~5 years

* About 600 patches merged upstream
- About 60 of these in crypto drivers

* Maintainer for couple of Tl related drivers/subsystems in upstream
Linux

e Linkedin: https://www.linkedin.com/in/tero-kristo-49068a/
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1. Introduction
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Cryptography overview

 What is cryptography?
- Relatively complex mathematical algorithms to convert data into something
unintelligible

 Why cryptography?
- Authentication (no spoofing of identity)

- Confidentiality (no eavesdropping)
- Integrity (no tampering of data)

e Different algorithms for different use-cases
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Authentication

 Asymmetric ciphers
- RSA, DSA etc.
- Has two keys, private and public
- Public key can be shared freely
* Applications: digital signing, secure
boot etc.

Sender *

-  Encrypt

-

Receiver
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Confidentiality

 Symmetric ciphers

- AES, DES etc.

- Much faster than asymmetric ones
* Private key

- Must be shared somehow secretly

» Applications: HDD encryption,
secure messaging, IPSec etc.

Sender

»  Encrypt

»  Decrypt

Receiver
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Integrity

* Hash algorithms

- MD5, SHA etc.
» Applications: image integrity Encrypt
checking, password storage etc.

* Impossible to generate original data ﬁ

from ciphertext
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2. Implementation
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Simplified system architecture
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Crypto API driver level concepts

e Transform
- A single algorithm implementing a cryptographic operation
- Either a hash, cipher, compression or random number generator (or AEAD)
- Initialized/removed via the cra_init / cra_exit calls

* Request

- A single crypto handling request containing data (might be zero length) to
be processed

- Single transform provides a few operations with whom the requests get
processed

- Results are typically provided back via asynchronous completion

» Both provide their contexts for driver level data storage
- Don’t mix up these two

* Their lifetime is also different 1
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Kernel APIs for creating a new algorithm

 int crypto_register skcipher(struct skcipher _alg *alg)
- For symmetric ciphers like AES, 3DES

 int crypto_register _ahash(struct ahash_alg *alg)
- For hash algorithms: SHA1, SHA2 etc.

* int crypto _register aead(struct aead _alg *alq)
- For AEAD algorithms which are combined suites like SHA256 + AES
(authenc(hmac(sha256),cbc(aes)))

* Plenty of others available also, but these are the ones we are
interested in this presentation

* Once proper register function has been selected, just need to fill the
*alg container
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Hash operations

* Hash needs to register following driver APIs via the cookie
* init(struct ahash _req *req)
- Initialize HW, hash state, internal data

* update(struct ahash_req *req)
- Send new data to accelerator

e final(struct ahash_req *req)
- Close current hash and return the result

* digest(struct ahash_req *req)
- Combination of init/update/final

» export(...) + import(struct ahash_req *req, void *data)
- Export current hash + status to continue it later
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Hash notes

* Both export and import must be implemented
- This might be tricky on some hw, so may resort to SW fallback only

* Register proper statesize
- Using too small size will ensure strange problems with memory handling
- Using too large will get the algorithm rejected by the crypto core

» Use SW fallback for small payload sizes
- Setting up DMAs etc. can be expensive per packet
- Can provide pretty large performance boost in some use cases

e Data will be sent over in multiple chunks (repeated update
calls)
- Complex buffering may be needed to handle things properly
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Cipher / AEAD operations

e cipher and AEAD need to register following via the cookie

e setkey(struct crypto {aead|skcipher]} *tfm, u8 *key, int keylen)
- Set the encryption key for the algorithm

* encrypt(struct {skcipher|aead} request *req)
- Encrypt a chunk of data

e decrypt(struct {skcipher|aead} request *req)
- Decrypt a chunk of data

» Additionally, AEAD needs to register this:

e setauthsize(struct crypto_aead *tfm, int authsize)
- Set the authentication data size for AEAD
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Cipher / AEAD notes

* Register proper state/reqgsizes
- Similar to hashes, wrong sizes here induce difficult to debug problems

* Cipher typically easier to implement than hashes due to data being
sent over in single chunk

* With small payload, use SW fallback similar to hashing
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Testing support

* Crypto self tests done by crypto core
- CONFIG_CRYPTO_MANAGER_DISABLE _TESTS=n (note inversion!)
- CONFIG_CRYPTO_MANAGER_EXTRA TESTS=y
- Results in the boot log if any failures seen
- /proc/crypto shows the status as unknown for any failed transforms
- tip: if testing hangs during boot, try adding timeout to the crypto_wait_req
to see what your driver was doing:
https://patchwork.kernel.org/patch/11195553/
* Crypto test module
- CONFIG_CRYPTO_TEST=m
- modprobe tcrypt.ko mode=<mod> sec=<sec>
- mode=600 for AES, mode=423 for SHA
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Testing support (cont.)

* openssl testing
- via either AF_ALG or devcrypto
- e.g. openssl speed -evp aes256 -engine devcrypto
- For devcrypto, must have cryptodev.ko installed

* IPSec testing

- via e.g. strongswan suite
- use iperf3 or something similar on top to test throughput
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Driver optimization tips

 Combine processing if possible
- Combine small data chunks to larger ones
- Combine multiple interrupts and process them in batches
- Combine multiple DMA xfers into single one

* Parallelism
- Queue multiple requests simultaneously to HW if possible

* SW fallback usage

- For small data chunks just execute the processing with SW fallback
algorithm

- Setting up DMA and processing the IRQ is expensive for small payloads

* Avoid scheduling

- If you have more data waiting when finalizing old one, attempt to queue
next chunk immediately (use crypto engine to do this automatically) 20
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3. Test Results
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HW used

* Tested on couple of Tl platforms

s AM57xx EVM
- Cortex A15 x2 @ 1.5GHz
- ARMv7 architecture
- NEON acceleration (-neon drivers)
- TI OMAP family crypto IPs in use

e ]721e EVM
- Cortex A72 x 2 @ 2GHz
- ARMvS8 architecture
- Crypto Extensions in use (-ce drivers)
- TI SA2UL crypto accelerator block
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Testing done

» Tested both HW accelerated and SW mode crypto

e Tcrypt.ko testing
- Basic usage: modprobe tcrypt.ko mode=<mode> sec=1
- SHA256 and AES-ECB with multiblock mode (AES=600, SHA=423)
captured results for 128b key
Slightly modified
e Larger than normal block sizes used (upto 64K)

* CPU load measured additionally in all tests
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Tcrypt results for AM57xx (1/2)
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Tcrypt results for AM57xx (2/2)
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Tcrypt results for }J7 (1/2)

SHAZ256-J7

mfie W-582
" g ==cpudh-sa2
- iy bw-ce
mgiy= cpU-h-cE
100 -
0

bs

26

W3 TExAS INSTRUMENTS



Tcrypt results for )7 (2/2)
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Thank you!
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