
1

Writing your own kernel crypto 
accelerator driver
For ELC-E 2020
Tero Kristo @ TI



Who am I 
• Worked 9 years for Texas Instruments on Linux kernel development
• Lead for TI baseport team for ~5 years
• About 600 patches merged upstream

– About 60 of these in crypto drivers
• Maintainer for couple of TI related drivers/subsystems in upstream 

Linux

• Linkedin: https://www.linkedin.com/in/tero-kristo-49068a/

2



Contents 
1. Introduction
2. Implementation details
3. Testing

3



1. Introduction 

4



Cryptography overview 
• What is cryptography?

– Relatively complex mathematical algorithms to convert data into something 
unintelligible

• Why cryptography?
– Authentication (no spoofing of identity)
– Confidentiality (no eavesdropping)
– Integrity (no tampering of data)

• Different algorithms for different use-cases

5



Authentication 
• Asymmetric ciphers

– RSA, DSA etc.
– Has two keys, private and public
– Public key can be shared freely

• Applications: digital signing, secure 
boot etc.

6



Confidentiality 
• Symmetric ciphers

– AES, DES etc.
– Much faster than asymmetric ones

• Private key
– Must be shared somehow secretly

• Applications: HDD encryption, 
secure messaging, IPSec etc.

7



Integrity 
• Hash algorithms

– MD5, SHA etc.
• Applications: image integrity 

checking, password storage etc.
• Impossible to generate original data 

from ciphertext

8



2. Implementation 

9



Simplified system architecture 

10



Crypto API driver level concepts 
• Transform

– A single algorithm implementing a cryptographic operation
– Either a hash, cipher, compression or random number generator (or AEAD)
– Initialized/removed via the cra_init / cra_exit calls

• Request
– A single crypto handling request containing data (might be zero length) to 

be processed
– Single transform provides a few operations with whom the requests get 

processed
– Results are typically provided back via asynchronous completion

• Both provide their contexts for driver level data storage
– Don’t mix up these two

• Their lifetime is also different 11



High level crypto sequence diagram 

12



Kernel APIs for creating a new algorithm 
• int crypto_register_skcipher(struct skcipher_alg *alg)

– For symmetric ciphers like AES, 3DES
• int crypto_register_ahash(struct ahash_alg *alg)

– For hash algorithms: SHA1, SHA2 etc.
• int crypto_register_aead(struct aead_alg *alg)

– For AEAD algorithms which are combined suites like SHA256 + AES 
(authenc(hmac(sha256),cbc(aes)))

• Plenty of others available also, but these are the ones we are 
interested in this presentation

• Once proper register function has been selected, just need to fill the 
*alg container

13



Hash operations 
• Hash needs to register following driver APIs via the cookie
• init(struct ahash_req *req)

– Initialize HW, hash state, internal data
• update(struct ahash_req *req)

– Send new data to accelerator
• final(struct ahash_req *req)

– Close current hash and return the result
• digest(struct ahash_req *req)

– Combination of init/update/final
• export(...) + import(struct ahash_req *req, void *data)

– Export current hash + status to continue it later
14



Hash notes
• Both export and import must be implemented

– This might be tricky on some hw, so may resort to SW fallback only
• Register proper statesize

– Using too small size will ensure strange problems with memory handling
– Using too large will get the algorithm rejected by the crypto core

• Use SW fallback for small payload sizes
– Setting up DMAs etc. can be expensive per packet
– Can provide pretty large performance boost in some use cases

• Data will be sent over in multiple chunks (repeated update 
calls)
– Complex buffering may be needed to handle things properly

15



Cipher / AEAD operations 
• cipher and AEAD need to register following via the cookie
• setkey(struct crypto_{aead|skcipher]} *tfm, u8 *key, int keylen)

– Set the encryption key for the algorithm
• encrypt(struct {skcipher|aead}_request *req)

– Encrypt a chunk of data
• decrypt(struct {skcipher|aead}_request *req)

– Decrypt a chunk of data
• Additionally, AEAD needs to register this:
• setauthsize(struct crypto_aead *tfm, int authsize)

– Set the authentication data size for AEAD

16



Cipher / AEAD notes 
• Register proper state/reqsizes

– Similar to hashes, wrong sizes here induce difficult to debug problems
• Cipher typically easier to implement than hashes due to data being 

sent over in single chunk
• With small payload, use SW fallback similar to hashing

17



Testing support 
• Crypto self tests done by crypto core

– CONFIG_CRYPTO_MANAGER_DISABLE_TESTS=n (note inversion!)
– CONFIG_CRYPTO_MANAGER_EXTRA_TESTS=y
– Results in the boot log if any failures seen
– /proc/crypto shows the status as unknown for any failed transforms
– tip: if testing hangs during boot, try adding timeout to the crypto_wait_req 

to see what your driver was doing: 
https://patchwork.kernel.org/patch/11195553/

• Crypto test module
– CONFIG_CRYPTO_TEST=m
– modprobe tcrypt.ko mode=<mod> sec=<sec>
– mode=600 for AES, mode=423 for SHA

18



Testing support (cont.) 
• openssl testing

– via either AF_ALG or devcrypto
– e.g. openssl speed -evp aes256 -engine devcrypto
– For devcrypto, must have cryptodev.ko installed

• IPSec testing
– via e.g. strongswan suite
– use iperf3 or something similar on top to test throughput

19



Driver optimization tips 
• Combine processing if possible

– Combine small data chunks to larger ones
– Combine multiple interrupts and process them in batches
– Combine multiple DMA xfers into single one

• Parallelism
– Queue multiple requests simultaneously to HW if possible

• SW fallback usage
– For small data chunks just execute the processing with SW fallback 

algorithm
– Setting up DMA and processing the IRQ is expensive for small payloads

• Avoid scheduling
– If you have more data waiting when finalizing old one, attempt to queue 

next chunk immediately (use crypto engine to do this automatically) 20



3. Test Results 

21



HW used 
• Tested on couple of TI platforms
• AM57xx EVM

– Cortex A15 x 2 @ 1.5GHz
– ARMv7 architecture
– NEON acceleration (-neon drivers)
– TI OMAP family crypto IPs in use

• J721e EVM
– Cortex A72 x 2 @ 2GHz
– ARMv8 architecture
– Crypto Extensions in use (-ce drivers)
– TI SA2UL crypto accelerator block

22



Testing done 
• Tested both HW accelerated and SW mode crypto
• Tcrypt.ko testing

– Basic usage: modprobe tcrypt.ko mode=<mode> sec=1
– SHA256 and AES-ECB with multiblock mode (AES=600, SHA=423)
– captured results for 128b key
– Slightly modified

•Larger than normal block sizes used (upto 64K)
• CPU load measured additionally in all tests

23



Tcrypt results for AM57xx (1/2)

24



Tcrypt results for AM57xx (2/2) 

25



Tcrypt results for J7 (1/2) 

26



Tcrypt results for J7 (2/2) 

27



Thank you! 

28


