
Security Enhancements (SE) for Android

Stephen Smalley
Trusted Systems Research
National Security Agency

2

Agenda
• Motivation/Background
• Current State
• Using SELinux in Android
• What's Next for SELinux in Android
• Beyond SELinux

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

3

Trusted Systems Research: Who are We?
● Perform R&D in support of NSA's Information

Assurance (IA) mission to protect and defend
National Security Information and
Information Systems.

● Long history of open source software
contribution and participation, starting with
release of SELinux in December 2000.

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

4

Our Motivation
• Increasing demand to use mobile devices.
• Desire to use commodity solutions.
• Risks posed by currently available solutions.

• Exploitation over wireless, radio, NFC…
• Data Leakage
• Application privilege escalation

CLASSIFICATION HEADER

CLASSIFICATION FOOTER

5

• Increasing importance of mobile device
security.
• Payment, banking, remote control.
• BYOD trend for corporate/enterprise use.
• Increasing use of mobile platforms in non-

traditional venues, including safety-critical.
• It isn't just a problem for government use.

Why It Matters for Everyone

6

• NSA Security Enhancements (SE) for Android project
• formerly known as Security-Enhanced (SE)

Android
• Identify and address critical gaps in the security of

Android.
• Why Android?

• Open source platform: suitable for a reference
implementation accessible to anyone.

• Broad market adoption: opportunity to improve
the security of a widely used mobile platform.

A Step in the Right Direction

7

• Created and released an open source
reference implementation of how to enable
and apply SELinux in Android.

• Presented the case for adopting SELinux in
Android.

• Worked with Android Open Source Project
(AOSP) to gain adoption into mainline
Android.

SE for Android: Contributions

8

SE for Android: Timeline
Jan 6 2012
SE for
Android
released

Jan 9 2012
Google
invites
submission

Mar 2012
Samsung
collaboration
begins

Sep/Oct 2013
2nd device
w/ SE ships-
Galaxy Note 3

Feb 2013
Samsung
announces
KNOX w/
SE for
Android

Apr 2013
First device
w/ SE ships -
Galaxy S4

Jul 2013
First Android
release
w/ SE
permissive-
Android 4.3

Oct 2013
4.3 update for
Galaxy S4
w/ SE
enforcing

Oct 31 2013
First Android
release w/ SE
enforcing -
Android 4.4

Feb 2014
Samsung
announces
KNOX 2.0,
Galaxy S5

9

• Mandatory Access Control (MAC) for Linux.
– Enforces an admin-defined security policy.
– Over all processes, objects, and operations.
– Based on security labels / contexts.

• Can confine services and apps.

– Even services that run as “root” / uid 0.
– Protect from misuse, contain damage.
– Mitigate risks of flawed and malicious programs.

SELinux: What is it?

10

• Each process and object is labeled with a security
context.

– A string of the form “user:role:type:level”.
– Only the type field is used in AOSP presently.

• Process types are also called domains.

• Domains and types are security equivalence classes.

– Identifiers for processes and objects in policy.
– Same domain/type => same access.

SELinux: Labeling

11

• The security policy configuration defines:
– how to label processes and objects with domains and

types,
– how domains can interact with each other (e.g. signals,

IPC, ptrace), and
– how domains can access types.

• No processes are exempt from the policy.

– Not overridden by uid-0 or Linux capabilities.
– Only notion of “unconfined” is policy-defined.

SELinux: Policy

12

• Disabled
– Not enabled in the kernel or disabled via kernel

parameter.
• Permissive

– Just logs denials but does not enforce them.
• Enforcing

– Logs and enforces denials for all enforcing
domains (processes).

SELinux: Possible States

13

• Per-Domain Permissive
– Permissive for specific domains (processes).
– Specified in policy on a per-domain basis.
– Enables incremental application of SELinux to an

ever increasing portion of the system.
– Enables policy development for new services and

apps while keeping the rest of the system
enforcing.

SELinux: Possible States

14

• Android 4.2 or earlier: Disabled.
• Android 4.3: Permissive.

– With all domains permissive + unconfined.
• Android 4.4: Enforcing.

– Enforcing for installd, netd, vold, and zygote.
– Permissive for app domains (logging denials).
– Permissive + unconfined for all other domains.

State of SELinux in AOSP

15

• First included in Galaxy S4 (4.2.2) but in permissive
by default.

• 4.3 and later updates switched to enforcing mode.
• No permissive domains (all enforcing).
• Only kernel and init domains are unconfined.
• Policy originally derived from our policy, but

customized by Samsung.

State of SELinux in Samsung KNOX

16

• Exploring SELinux.
• Policy configuration files.
• Policy for services.
• Policy for apps.
• Dealing with denials.
• Dealing with neverallow failures.

Using SELinux in Android

17

• toolbox built-in commands and options
– getenforce, setenforce

– ls -Z, ps -Z

• Seeing denials:

– dmesg | grep avc: # current boot
– cat /proc/last_kmsg | grep avc: # prior boot

Exploring SELinux

18

• external/sepolicy
– Device-independent configuration
– Do not modify for your device!

• device/<vendor>/<product>/sepolicy
– Device-specific configuration
– Based on BOARD_SEPOLICY_* variables.
– Documented in external/sepolicy/README.
– Examples for Nexus devices in AOSP, e.g.

● device/lge/hammerhead/{BoardConfig.mk,sepolicy/*}

Policy Configuration Sources

19

● .te files: Domain and type definitions, rules.
– Typically one .te file per domain, e.g. installd.te.
– Device and file types declared in device.te, file.te.
– Shared rules in certain files (domain.te, app.te).

● Written using macros from global_macros,
te_macros and attributes (type sets) from
attributes.

Type Enforcement (TE) Configuration

20

• file_contexts: File security contexts
– Labels for /system (consulted by make_ext4fs).
– Labels for /dev, /sys, /data directories created by

init.rc files (consulted by init, ueventd, and others).
– Labels for restorecon (“restore security context”).

• property_contexts: Property security contexts
– Labels for init property service permission checks.

Labeling Configuration Files

21

• mac_permissions.xml
– Maps app certificate to a seinfo string.
– Used by PackageManagerService / SELinuxMMAC.

• seapp_contexts
– Maps app UID and optionally seinfo string to

domain for app and type for /data/data directory.
– Used by zygote and installd via libselinux.

App Labeling Configuration Files

22

● Union/replace/ignore files based on
BOARD_SEPOLICY_* variables.

● Concatenate and expand macros using m4.
– For kernel policy, yields policy.conf file.

● For kernel policy, compile policy.conf file to binary
sepolicy file using checkpolicy.

● Other configurations checked but not compiled
using similar helpers (checkfc, checkseapp).

Policy Build

23

● /sepolicy: Kernel binary policy
● /file_contexts: File security contexts
● /property_contexts: Property security contexts
● /seapp_contexts: App security contexts
● /system/etc/security/mac_permissions.xml: App

certificate to seinfo mapping

On-Device Policy Files

24

• Every service needs a domain.
• ps -Z | grep :init: should only list the init

process.
• Anything else is a service left running in the

init domain.
• Need to place any such service into its own

domain.
• This is enforced by CTS in AOSP master.

Policy for Services

25

• Options:
– Define an automatic domain transition in policy.
– Use the seclabel option in the init.<board>.rc

file.
• First option is preferred if possible.
• Second option supports services run from rootfs or

launched via shell scripts.

Labeling a Service

26

● device/lge/hammerhead/sepolicy/netmgrd.te:
type netmgrd, domain;
type netmgrd_exec, exec_type, file_type;
init_daemon_domain(netmgrd)
...
● device/lge/hammerhead/sepolicy/file_contexts:

/system/bin/netmgrd u:object_r:netmgrd_exec:s0

Labeling a Service via Transition (1/2)

27

• device/lge/hammerhead/BoardConfig.mk:
BOARD_SEPOLICY_DIRS += \
 device/lge/hammerhead/sepolicy

BOARD_SEPOLICY_UNION += \
 netmgrd.te \
 file_contexts \
 ...

Labeling a Service via Transition (2/2)

28

• device/asus/flo/init.flo.rc:
service hciattach /system/bin/sh /system/etc/init.flo.bt.sh
seclabel u:r:bluetooth_loader:s0
● device/asus/flo/BoardConfigCommon.mk:

BOARD_SEPOLICY_DIRS += device/asus/flo/sepolicy
BOARD_SEPOLICY_UNION += bluetooth_loader.te
● device/asus/flo/sepolicy/bluetooth_loader.te:

type bluetooth_loader, domain;
allow bluetooth_loader shell_exec:file { entrypoint read };

Labeling a Service via seclabel

29

● Based on mac_permissions.xml and
seapp_contexts.

● Divides into several categories:
– System apps by platform UID
– System apps by certificate
– Other apps
– Isolated services

Labeling Apps

30

● seapp_contexts:
user=system domain=system_app type=system_data_file

user=bluetooth domain=bluetooth type=bluetooth_data_file

user=nfc domain=nfc type=nfc_data_file

user=radio domain=radio type=radio_data_file

user=shell domain=shell type=shell_data_file

System Apps by Platform UID

31

● mac_permissions.xml:

<signer signature="@PLATFORM" >
 <seinfo value="platform" />
</signer>

● seapp_contexts:

user=_app seinfo=platform domain=platform_app
type= app_data_file

System Apps by Certificate

32

● At build time, mac_permissions.xml signature tag
names (e.g. @PLATFORM) are rewritten to the actual
certificate value extracted from .pem file specified
by external/sepolicy/keys.conf.

● build/tools/releasetools/sign_target_files_apks
rewrites mac_permissions.xml with updated
certificate values for new keys.

System Apps by Certificate

33

● seapp_contexts:
user=_app domain=untrusted_app type=app_data_file

● Assigned to system apps with regular app IDs
unless they have a more specific entry that
matches.

● Assigned to all third party apps (in AOSP).

Other Apps

34

● seapp_contexts:
user=_isolated domain=isolated_app

● isolated_app domain is for services with
android:isolatedProcess=”true” in manifest.
– e.g. Chrome sandbox process

Isolated Services

35

• Most denials are due to labeling problems.
– Wrong domain for process or wrong type for file.

• Fix the labeling and the rest will typically follow.

– Define a domain transition for the service.
– Define type transitions for service-created files.
– Update file_contexts for:

● service sockets, /data directories, /dev nodes,
/sys files

Dealing with Denials: Labeling Problems

36

● /proc files
– Label using genfs_contexts (part of kernel policy).

● Filesystems that do not support labeling.
– Default assigned via genfs_contexts.
– Per-mount label can be assigned using

context= mount option.

Other Labeling Problems

37

• device/lge/hammerhead/fstab.hammerhead:
/dev/block/platform/msm_sdcc.1/by-name/modem
/firmware vfat ro,shortname=lower,uid=1000,gid=1000,
dmask=227, fmask=337,
context=u:object_r:firmware_file:s0 wait

• device/lge/hammerhead/sepolicy/genfs_contexts:
genfscon proc /bluetooth/sleep/lpm u:object_r:proc_bluetooth_writable:s0
genfscon proc /bluetooth/sleep/btwrite u:object_r:proc_bluetooth_writable:s0

Fixing Labeling Problems Example

38

• Some denials are harmless – the program will not fail
even if not allowed.

– Can use a dontaudit rule to silence the denial.
– Be careful about using such rules!

• Example: netmgrd attempts to load a network
driver, triggers sys_module denial. But kernel is not
modular!

– dontaudit netmgrd self:capability sys_module;

Dealing with Denials: dontaudit

39

• Consider whether you can avoid the need for
the capability.

– Add a group to the service or change the
ownership or mode of a file.

– Pre-create directories with correct owner/mode
in init.<board>.rc.

• Consider whether a lesser capability can be allowed.

– dac_read_search rather than dac_override.

Dealing with Denials: Linux capabilities

40

adb shell su 0 cat /proc/kmsg > dmesg.txt &
audit2allow -p out/target/product/<product>/root/sepolicy <
 dmesg.txt > allows.txt

• Review allows.txt.
• But do NOT blindly add the rules it generated to your

policy!
• Always try to generalize the rule generated by

audit2allow.

Dealing with Denials: audit2allow

41

● Allow for all domains?
– Rewrite using domain attribute, add to domain.te.

● Allow for all app domains?
– Rewrite using appdomain attribute, add to app.te.

● Consider whether the rule should be written
using an attribute from attributes.

Generalizing audit2allow rules

42

● Use macros (from global_macros, te_macros).
– Common groupings of classes, permissions, rules.
– Needs create? Use create_file_perms.
– Needs open + read? Use r_file_perms.
– Needs open + write? Use rw_file_perms.
– Needs execute, execute_no_trans? Use rx_file_perms.
– Reduces policy brittleness.

Generalizing audit2allow rules

43

avc: denied { execute } for pid=3849
comm="netmgrd" name="sh" dev="mmcblk0p25"
ino=224 scontext=u:r:netmgrd:s0
tcontext=u:object_r:shell_exec:s0 tclass=file

● netmgrd service attempted to execute sh.
● To allow, add following line to netmgrd.te:

allow netmgrd shell_exec:file rx_file_perms;

SELinux Denial Example

44

● Fails in enforcing mode but no avc: denied message.
● Remove suspect dontaudit rules and re-test.
● Can also use sepolicy.dontaudit file.

– Under obj/ETC/sepolicy_intermediates.
– Copy of policy with all dontaudit rules stripped.
– But do not allow everything logged when using

this policy!

Addressing Hidden Denials

45

• Policy contains a set of neverallow rules to prevent adding unsafe
allow rules.

• Checked by checkpolicy during policy build.
– New CTS test will also check on device.

• Do not remove or comment out neverallow rules!

• Whenever possible, eliminate the need for the allow rule.

• As needed, can craft narrow exceptions for specific domains, types or
permissions by amending the neverallow rule.

– A good idea to propose to AOSP first!
– Otherwise you may fail CTS in the future...

Dealing with neverallow failures

46

● rmt_storage reads/writes raw partitions.

allow rmt block_device:blk_file rw_file_perms;

● This violates a neverallow rule and will fail to build.

neverallow on line 223 of external/sepolicy/domain.te (or
line 7284 of policy.conf) violated by allow rmt
block_device:blk_file { read write open };

Neverallow Failure Example

47

● Only allow access to specific partitions.
● device/lge/hammerhead/sepolicy/device.te:

type modem_block_device, dev_type;
● device/lge/hammerhead/sepolicy/file_contexts:

/dev/block/mmcblk0p1[23] u:object_r:modem_block_device:s0
● device/lge/hammerhead/sepolicy/rmt.te:

allow rmt modem_block_device:blk_file rw_file_perms;

Neverallow Failure Resolution

48

• Compiled policy file
– out/target/product/<product>/root/sepolicy
– /sepolicy (on device)

• SELinux tools available in Linux distributions

– yum install “setools*” (Fedora)

– apt-get install setools (Ubuntu >= 12.10)
– seinfo, sesearch, sediff, apol

● Some tools included in AOSP master

– dispol, sepolicy-analyze

Analyzing Policy

49

• Disclaimer: Speculative, merely based on what is
presently merged in the Android Open Source Project
(AOSP) master branch.

• Some of these changes may not have been merged in
time for the next Android release or may be reverted
before release.

• We have no insight into what Google is doing in their
internal tree, so there may be other SELinux changes
coming in the next release.

What's Next for SELinux in Android?

50

• All domains will be enforcing (in -user builds).
• Many more domains have been confined.
• Unconfined is no longer all powerful.
• mmap/mprotect PROT_EXEC is more restricted.
• Recursive restorecon support has been added.
• New CTS tests for SELinux have been added.
• Denials available via logcat.
• Fewer app domains by default.

What's Next for SELinux in Android?

51

• New permissive_or_unconfined() policy macro.
• Per-domain permissive if -userdebug or -eng.
• Unconfined but enforcing if -user.
• Enables policy debugging in debug/eng builds.
• Makes domain enforcing with unconfined rules in

user builds.
• Use this instead of direct permissive <domain>;

declarations in your .te files.
• Remove permissive_or_unconfined() call once all

denials have been addressed in your policy.

All Domains Enforcing

52

• 4 (out of 48) in Android 4.4.2 for Nexus 5.
• 43 (out of 61) in current AOSP master for Nexus 5.
• Primarily domains for services.
• Also includes shell (ADB shell) and isolated_app

(isolatedProcess, e.g. Chrome sandbox) domains.
• Also includes domains for recovery.

– Requires updating init.rc for recovery.
– See bootable/recovery/etc/init.rc in AOSP master.

Confined+Enforcing Domains

53

• Only init can load SELinux policy or change
enforcing mode.

• Nothing can read/write /dev/kmem or
/dev/mem.

• Only init can set kernel usermodehelpers and
proc security settings.

• Nothing can ptrace init.
• Nothing can map low memory.

Unconfined Domain Lockdown

54

• No (re)mounting filesystems (*) except as allowed by
policy.

• No raw I/O or mknod (*).
• No kernel module loading (*).
• No ptrace attach or access to sensitive /proc/pid files

(*).
• No execute to files outside of rootfs or /system (*)
• No transitions to other domains (*).

Unconfined Domain Lockdown

55

• No PROT_EXEC anonymous mappings or (modified)
private file mappings except as allowed by policy.

• Still must be allowed for the Dalvik-based
components (Java) for JIT.

• But can be locked down for system services.

mmap/mprotect PROT_EXEC lockdown

56

• New restorecon_recursive init built-in command.
• restorecon_recursive /data called by init.rc.

– Fixes labels on existing userdata.
– Only runs once per change to file_contexts.

• Similar support in PMS/installd for /data/data.
– Only runs once per change to seapp_contexts.

• init.<board>.rc files can call restorecon_recursive for
other partitions (e.g. /persist, /factory).

• No more unlabeled files!

Recursive restorecon

57

● SELinuxTest
– Policy must not contain any booleans.
– Policy must pass a core set of neverallow & allow checks.

● SELinuxDomainTest
– Running services must have the correct domain, executable,

and cardinality.
– No processes other than init in the init domain.
– No non-kernel threads in the kernel domain.

New CTS tests

58

● logd
– New userspace log daemon created by Google.

● Includes audit support.
– Derived from SE for Android auditd code.

● SELinux denials now visible in logcat!
– Look in logcat rather than dmesg.

Denials via logcat

59

● Dropped separate app domains for build keys
other than platform certificate (shared_app,
media_app, release_app).

● Coalesced to untrusted_app domain.
● Can still split out specific apps via

mac_permissions.xml and seapp_contexts.

App Domain Reduction

60

● mac_permissions.xml:

<signer signature="@BROWSER" >
 <package name="com.android.browser" >
 <seinfo value="browser" />
 </package>
</signer>

● seapp_contexts:

user=_app seinfo=browser domain=browser_app type=
app_data_file

App Labeling by Certificate + Package

61

• Middleware MAC
• TrustZone and Virtualization

Beyond SELinux

62

• Install-time MAC: Whitelist/disable apps.
– Even pre-installed ones.

• Enterprise Ops: Control app operations.
– Extension to AppOps mechanism introduced in 4.3.
– Obsoletes our older permission revocation mechanism.

• Intent Firewall: Control app interactions.
– Introduced in Android 4.3.
– Obsoletes our older intent MAC mechanism.

Middleware MAC

63

• Leveraging TrustZone to enable trusted boot, sealed
storage and remote attestation.

• Leveraging hardware virtualization to confine driver
vulnerabilities and to enable protection and assured
invocation of critical services.

• See my NDSS'13 keynote: Laying a Secure
Foundation for Mobile Devices

– http://www.internetsociety.org/doc/laying-
secure-foundation-mobile-devices

TrustZone and Virtualization

64

• Send email to seandroid-list-join@tycho.nsa.gov to
join the public SE for Android mailing list.

• Private email just to our SE for Android team:
seandroid@tycho.nsa.gov

• Source code: https://bitbucket.org/seandroid
• Wiki: http://selinuxproject.org/page/SEforAndroid

Questions?

65

• Android SELinux docs,
https://source.android.com/devices/tech/security/se
-linux.html

• The SELinux Notebook,
http://www.freetechbooks.com/the-selinux-
notebook-the-foundations-t785.html

• NSA SELinux docs,
http://www.nsa.gov/research/selinux/docs.shtml

• SELinux community wiki, selinuxproject.org

Other Resources

66

● Extra slides that may be helpful for reference.

Reference Material

67

• allow <domains> <types>:<classes> { <permissions> };
– <domains>: process domains
– <types>: object types
– <classes>: kind of objects, e.g. process, file, dir (directory), ...
– <permissions>: operations on <classes>, e.g. read, write,

create, execute, ...
● Classes and permissions defined by security_classes,

access_vectors.
● Common groupings provided by global_macros, te_macros.

Type Enforcement (TE) Allow Rules

68

• type_transition <domains> <types>:<classes> <new-type> <optional-
component-name>;

– <domains>: process domains
– <types>:types of related objects (e.g. executable, parent directory)
– <classes>: kinds of object, e.g. process, file, dir (directory), ...
– <new-type>: new type to assign to process or object
– <optional-component-name>: optional file name for name-based

transition
● Helper macros in te_macros (init_daemon_domain,

domain_auto_trans, file_type_auto_trans).

Type Enforcement (TE) Transition Rules

69

● Label /data/misc/wifi/sockets with wpa_socket
type when created by wpa_supplicant (wpa.te):

type_transition wpa wifi_data_file:dir wpa_socket
"sockets";

● Preserve upon a restorecon_recursive
(file_contexts).

/data/misc/wifi/sockets(/.*)? u:object_r:wpa_socket:s0

File Type Transition Example

70

● fs_use

– Tells SELinux how to label filesystem types.
– Kernel code and configuration must support the

specified behavior or it will not work!
• genfs_contexts: Generic filesystem security contexts

– Labels for filesystems that do not support labeling.
– Per-file labeling for /proc files.

Other Policy Source Files

71

● mls: Multi-level Security (MLS) configuration
– Only relevant if assigning levels using level= or

levelFrom= in seapp_contexts.
– Not relevant in AOSP policy.

● roles, users
– Role and (SELinux) user declarations.
– Only one of each in AOSP policy.

Other Policy Source Files

72

● Do NOT modify any of the following files!

– They are linked to kernel definitions.
● security_classes, access_vectors

– Define class and permission definitions.
● initial_sids, initial_sid_contexts

– Predefined security contexts used by kernel.
● policy_capabilities

– Enables optional kernel/policy features.

Other Policy Source Files

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

