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Trusted Systems Research:  Who are We?
● Perform R&D in support of NSA's Information 

Assurance (IA) mission to protect and defend 
National Security Information and 
Information Systems.

● Long history of open source software 
contribution and participation, starting with 
release of SELinux in December 2000.

CLASSIFICATION HEADER

CLASSIFICATION FOOTER
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Our Motivation
• Increasing demand to use mobile devices.
• Desire to use commodity solutions.
• Risks posed by currently available solutions.

• Exploitation over wireless, radio, NFC…
• Data Leakage
• Application privilege escalation

CLASSIFICATION HEADER

CLASSIFICATION FOOTER



5

• Increasing importance of mobile device 
security.
• Payment, banking, remote control.
• BYOD trend for corporate/enterprise use.
• Increasing use of mobile platforms in non-

traditional venues, including safety-critical.
• It isn't just a problem for government use.

Why It Matters for Everyone
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• NSA Security Enhancements (SE) for Android project
• formerly known as Security-Enhanced (SE) 

Android
• Identify and address critical gaps in the security of 

Android.
• Why Android?

• Open source platform: suitable for a reference 
implementation accessible to anyone.

• Broad market adoption: opportunity to improve 
the security of a widely used mobile platform.

A Step in the Right Direction
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• Created and released an open source 
reference implementation of how to enable 
and apply SELinux in Android.

• Presented the case for adopting SELinux in 
Android.

• Worked with Android Open Source Project 
(AOSP) to gain adoption into mainline 
Android.

SE for Android:  Contributions
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SE for Android: Timeline
Jan 6 2012
SE for
Android
released

Jan 9 2012
Google
invites
submission

Mar 2012
Samsung
collaboration
begins

Sep/Oct 2013 
2nd device
w/ SE ships-
Galaxy Note 3

Feb 2013
Samsung
announces
KNOX w/
SE for
Android

Apr 2013
First device
w/ SE ships -
Galaxy S4

Jul 2013
First Android
release
w/ SE
permissive-
Android 4.3

Oct 2013
4.3 update for
Galaxy S4
w/ SE
enforcing

Oct 31 2013 
First Android
release w/ SE
enforcing -
Android 4.4

Feb 2014
Samsung
announces
KNOX 2.0,
Galaxy S5
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• Mandatory Access Control (MAC) for Linux.
– Enforces an admin-defined security policy.
– Over all processes, objects, and operations.
– Based on security labels / contexts.

• Can confine services and apps.

– Even services that run as “root” / uid 0.
– Protect from misuse, contain damage.
– Mitigate risks of flawed and malicious programs.

SELinux: What is it?
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• Each process and object is labeled with a security 
context.

– A string of the form “user:role:type:level”.
– Only the type field is used in AOSP presently.

• Process types are also called domains.

• Domains and types are security equivalence classes.

– Identifiers for processes and objects in policy.
– Same domain/type => same access.

SELinux: Labeling
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• The security policy configuration defines:
– how to label processes and objects with domains and 

types,
– how domains can interact with each other (e.g. signals, 

IPC, ptrace), and
– how domains can access types.

• No processes are exempt from the policy.

– Not overridden by uid-0 or Linux capabilities.
– Only notion of “unconfined” is policy-defined.

SELinux: Policy
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• Disabled
– Not enabled in the kernel or disabled via kernel 

parameter.
• Permissive

– Just logs denials but does not enforce them.
• Enforcing

– Logs and enforces denials for all enforcing 
domains (processes).

SELinux:  Possible States
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• Per-Domain Permissive
– Permissive for specific domains (processes).
– Specified in policy on a per-domain basis.
– Enables incremental application of SELinux to an 

ever increasing portion of the system.
– Enables policy development for new services and 

apps while keeping the rest of the system 
enforcing.

SELinux:  Possible States
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• Android 4.2 or earlier: Disabled.
• Android 4.3: Permissive.

– With all domains permissive + unconfined.
• Android 4.4: Enforcing.

– Enforcing for installd, netd, vold, and zygote. 
– Permissive for app domains (logging denials).
– Permissive + unconfined for all other domains.

State of SELinux in AOSP
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• First included in Galaxy S4 (4.2.2) but in permissive 
by default.

• 4.3 and later updates switched to enforcing mode.
• No permissive domains (all enforcing).
• Only kernel and init domains are unconfined.
• Policy originally derived from our policy, but 

customized by Samsung.

State of SELinux in Samsung KNOX
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• Exploring SELinux.
• Policy configuration files.
• Policy for services.
• Policy for apps.
• Dealing with denials.
• Dealing with neverallow failures.

Using SELinux in Android
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• toolbox built-in commands and options
– getenforce, setenforce

– ls -Z, ps -Z

• Seeing denials:

– dmesg | grep avc: # current boot
– cat /proc/last_kmsg | grep avc: # prior boot

Exploring SELinux
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• external/sepolicy
– Device-independent configuration
– Do not modify for your device!

• device/<vendor>/<product>/sepolicy
– Device-specific configuration
– Based on BOARD_SEPOLICY_* variables.
– Documented in external/sepolicy/README.
– Examples for Nexus devices in AOSP, e.g.

● device/lge/hammerhead/{BoardConfig.mk,sepolicy/*}

Policy Configuration Sources
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● .te files: Domain and type definitions, rules.
– Typically one .te file per domain, e.g. installd.te.
– Device and file types declared in device.te, file.te.
– Shared rules in certain files (domain.te, app.te).

● Written using macros from global_macros, 
te_macros and attributes (type sets) from 
attributes.

Type Enforcement (TE) Configuration



20

• file_contexts: File security contexts
– Labels for /system (consulted by make_ext4fs).
– Labels for /dev, /sys, /data directories created by 

init.rc files (consulted by init, ueventd, and others).
– Labels for restorecon (“restore security context”).

• property_contexts: Property security contexts
– Labels for init property service permission checks.

Labeling Configuration Files
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• mac_permissions.xml
– Maps app certificate to a seinfo string.
– Used by PackageManagerService / SELinuxMMAC.

• seapp_contexts
– Maps app UID and optionally seinfo string to 

domain for app  and type for /data/data directory.
– Used by zygote and installd via libselinux.

App Labeling Configuration Files
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● Union/replace/ignore files based on 
BOARD_SEPOLICY_* variables.

● Concatenate and expand macros using m4.
– For kernel policy, yields policy.conf file.

● For kernel policy, compile policy.conf file to binary 
sepolicy file using checkpolicy.

● Other configurations checked but not compiled 
using similar helpers (checkfc, checkseapp).

Policy Build
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● /sepolicy: Kernel binary policy
● /file_contexts: File security contexts
● /property_contexts: Property security contexts
● /seapp_contexts: App security contexts
● /system/etc/security/mac_permissions.xml: App 

certificate to seinfo mapping

On-Device Policy Files
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• Every service needs a domain.
• ps -Z | grep :init: should only list the init 

process.
• Anything else is a service left running in the 

init domain.
• Need to place any such service into its own 

domain.
• This is enforced by CTS in AOSP master.

Policy for Services
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• Options:
– Define an automatic domain transition in policy.
– Use the seclabel option in the init.<board>.rc 

file.
• First option is preferred if possible.
• Second option supports services run from rootfs or 

launched via shell scripts.

Labeling a Service
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● device/lge/hammerhead/sepolicy/netmgrd.te:
type netmgrd, domain;
type netmgrd_exec, exec_type, file_type;
init_daemon_domain(netmgrd)
...
● device/lge/hammerhead/sepolicy/file_contexts:

/system/bin/netmgrd                u:object_r:netmgrd_exec:s0

Labeling a Service via Transition (1/2)
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• device/lge/hammerhead/BoardConfig.mk:
BOARD_SEPOLICY_DIRS += \
       device/lge/hammerhead/sepolicy

BOARD_SEPOLICY_UNION += \
       netmgrd.te \
       file_contexts \
       ...

Labeling a Service via Transition (2/2)
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• device/asus/flo/init.flo.rc:
service hciattach /system/bin/sh /system/etc/init.flo.bt.sh
seclabel u:r:bluetooth_loader:s0
● device/asus/flo/BoardConfigCommon.mk:

BOARD_SEPOLICY_DIRS += device/asus/flo/sepolicy
BOARD_SEPOLICY_UNION += bluetooth_loader.te
● device/asus/flo/sepolicy/bluetooth_loader.te:

type bluetooth_loader, domain;
allow bluetooth_loader shell_exec:file { entrypoint read };

Labeling a Service via seclabel
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● Based on mac_permissions.xml and 
seapp_contexts.

● Divides into several categories:
– System apps by platform UID
– System apps by certificate
– Other apps
– Isolated services

Labeling Apps
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● seapp_contexts:
user=system domain=system_app type=system_data_file

user=bluetooth domain=bluetooth type=bluetooth_data_file

user=nfc domain=nfc type=nfc_data_file

user=radio domain=radio type=radio_data_file

user=shell domain=shell type=shell_data_file

System Apps by Platform UID
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● mac_permissions.xml:

<signer signature="@PLATFORM" >
    <seinfo value="platform" />
</signer>

● seapp_contexts:

user=_app seinfo=platform domain=platform_app   
type= app_data_file

System Apps by Certificate
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● At build time, mac_permissions.xml signature tag 
names (e.g. @PLATFORM) are rewritten to the actual 
certificate value extracted from .pem file specified 
by external/sepolicy/keys.conf.

● build/tools/releasetools/sign_target_files_apks 
rewrites mac_permissions.xml with updated 
certificate values for new keys.

System Apps by Certificate
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● seapp_contexts:
user=_app domain=untrusted_app type=app_data_file

● Assigned to system apps with regular app IDs 
unless they have a more specific entry that 
matches.

● Assigned to all third party apps (in AOSP).

Other Apps
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● seapp_contexts:
user=_isolated domain=isolated_app

● isolated_app domain is for services with 
android:isolatedProcess=”true” in manifest.
– e.g. Chrome sandbox process

Isolated Services
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• Most denials are due to labeling problems.
– Wrong domain for process or wrong type for file.

• Fix the labeling and the rest will typically follow.

– Define a domain transition for the service.
– Define type transitions for service-created files.
– Update file_contexts for:

● service sockets, /data directories, /dev nodes, 
/sys files

Dealing with Denials: Labeling Problems
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● /proc files
– Label using genfs_contexts (part of kernel policy).

● Filesystems that do not support labeling.
– Default assigned via genfs_contexts.
– Per-mount label can be assigned using 

context= mount option.

Other Labeling Problems
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• device/lge/hammerhead/fstab.hammerhead:
/dev/block/platform/msm_sdcc.1/by-name/modem        
/firmware    vfat     ro,shortname=lower,uid=1000,gid=1000, 
dmask=227, fmask=337, 
context=u:object_r:firmware_file:s0        wait

• device/lge/hammerhead/sepolicy/genfs_contexts:
genfscon proc /bluetooth/sleep/lpm u:object_r:proc_bluetooth_writable:s0
genfscon proc /bluetooth/sleep/btwrite u:object_r:proc_bluetooth_writable:s0

Fixing Labeling Problems Example
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• Some denials are harmless – the program will not fail 
even if not allowed.

– Can use a dontaudit rule to silence the denial.
– Be careful about using such rules!

• Example:  netmgrd attempts to load a network 
driver, triggers sys_module denial.  But kernel is not 
modular!

– dontaudit netmgrd self:capability sys_module;

Dealing with Denials: dontaudit
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• Consider whether you can avoid the need for 
the capability.

– Add a group to the service or change the 
ownership or mode of a file.

– Pre-create directories with correct owner/mode 
in init.<board>.rc.

• Consider whether a lesser capability can be allowed.

– dac_read_search rather than dac_override.

Dealing with Denials: Linux capabilities
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adb shell su 0 cat /proc/kmsg > dmesg.txt &
audit2allow -p out/target/product/<product>/root/sepolicy <  
     dmesg.txt > allows.txt

• Review allows.txt.
• But do NOT blindly add the rules it generated to your 

policy!
• Always try to generalize the rule generated by 

audit2allow.

Dealing with Denials: audit2allow
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● Allow for all domains?
– Rewrite using domain attribute, add to domain.te.

● Allow for all app domains?
– Rewrite using appdomain attribute, add to app.te.

● Consider whether the rule should be written 
using an attribute from attributes.

Generalizing audit2allow rules
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● Use macros (from global_macros, te_macros).
– Common groupings of classes, permissions, rules.
– Needs create?  Use create_file_perms.
– Needs open + read?  Use r_file_perms.
– Needs open + write? Use rw_file_perms.
– Needs execute, execute_no_trans?  Use rx_file_perms.
– Reduces policy brittleness.

Generalizing audit2allow rules
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avc:  denied  { execute } for  pid=3849 
comm="netmgrd" name="sh" dev="mmcblk0p25" 
ino=224 scontext=u:r:netmgrd:s0 
tcontext=u:object_r:shell_exec:s0 tclass=file

● netmgrd service attempted to execute sh.
● To allow, add following line to netmgrd.te:

allow netmgrd shell_exec:file rx_file_perms;

SELinux Denial Example



44

● Fails in enforcing mode but no avc: denied message.
● Remove suspect dontaudit rules and re-test.
● Can also use sepolicy.dontaudit file.

– Under obj/ETC/sepolicy_intermediates.
– Copy of policy with all dontaudit rules stripped.
– But do not allow everything logged when using 

this policy!

Addressing Hidden Denials
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• Policy contains a set of neverallow rules to prevent adding unsafe 
allow rules.

• Checked by checkpolicy during policy build.
– New CTS test will also check on device.

• Do not remove or comment out neverallow rules!

• Whenever possible, eliminate the need for the allow rule.

• As needed, can craft narrow exceptions for specific domains, types or 
permissions by amending the neverallow rule.

– A good idea to propose to AOSP first!
– Otherwise you may fail CTS in the future...

Dealing with neverallow failures
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● rmt_storage reads/writes raw partitions.

allow rmt block_device:blk_file rw_file_perms;

● This violates a neverallow rule and will fail to build.

neverallow on line 223 of external/sepolicy/domain.te (or 
line 7284 of policy.conf) violated by allow rmt 
block_device:blk_file { read write open };

Neverallow Failure Example
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● Only allow access to specific partitions.
● device/lge/hammerhead/sepolicy/device.te:

type modem_block_device, dev_type;
● device/lge/hammerhead/sepolicy/file_contexts:

/dev/block/mmcblk0p1[23]   u:object_r:modem_block_device:s0
● device/lge/hammerhead/sepolicy/rmt.te:

allow rmt modem_block_device:blk_file rw_file_perms;

Neverallow Failure Resolution
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• Compiled policy file
– out/target/product/<product>/root/sepolicy
– /sepolicy (on device)

• SELinux tools available in Linux distributions

– yum install “setools*” (Fedora)

– apt-get install setools (Ubuntu >= 12.10)
– seinfo, sesearch, sediff, apol

● Some tools included in AOSP master

– dispol, sepolicy-analyze

Analyzing Policy
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• Disclaimer:  Speculative, merely based on what is 
presently merged in the Android Open Source Project 
(AOSP) master branch.

• Some of these changes may not have been merged in 
time for the next Android release or may be reverted 
before release.

• We have no insight into what Google is doing in their 
internal tree, so there may be other SELinux changes 
coming in the next release.

What's Next for SELinux in Android?
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• All domains will be enforcing (in -user builds).
• Many more domains have been confined.
• Unconfined is no longer all powerful.
• mmap/mprotect PROT_EXEC is more restricted.
• Recursive restorecon support has been added.
• New CTS tests for SELinux have been added.
• Denials available via logcat.
• Fewer app domains by default.

What's Next for SELinux in Android?
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• New permissive_or_unconfined() policy macro.
• Per-domain permissive if -userdebug or -eng.
• Unconfined but enforcing if -user.
• Enables policy debugging in debug/eng builds.
• Makes domain enforcing with unconfined rules in 

user builds.
• Use this instead of direct permissive <domain>; 

declarations in your .te files.
• Remove permissive_or_unconfined() call once all 

denials have been addressed in your policy.

All Domains Enforcing
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• 4 (out of 48) in Android 4.4.2 for Nexus 5.
• 43 (out of 61) in current AOSP master for Nexus 5.
• Primarily domains for services.
• Also includes shell (ADB shell) and isolated_app 

(isolatedProcess, e.g. Chrome sandbox) domains.
• Also includes domains for recovery.

– Requires updating init.rc for recovery.
– See bootable/recovery/etc/init.rc in AOSP master.

Confined+Enforcing Domains
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• Only init can load SELinux policy or change 
enforcing mode.

• Nothing can read/write /dev/kmem or 
/dev/mem.

• Only init can set kernel usermodehelpers and 
proc security settings.

• Nothing can ptrace init.
• Nothing can map low memory.

Unconfined Domain Lockdown
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• No (re)mounting filesystems (*) except as allowed by 
policy.

• No raw I/O or mknod (*).
• No kernel module loading (*).
• No ptrace attach or access to sensitive /proc/pid files 

(*).
• No execute to files outside of rootfs or /system (*)
• No transitions to other domains (*).

Unconfined Domain Lockdown
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• No PROT_EXEC anonymous mappings or (modified) 
private file mappings except as allowed by policy.

• Still must be allowed for the Dalvik-based 
components (Java) for JIT.

• But can be locked down for system services.

mmap/mprotect PROT_EXEC lockdown
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• New restorecon_recursive init built-in command.
• restorecon_recursive /data called by init.rc.

– Fixes labels on existing userdata.
– Only runs once per change to file_contexts.

• Similar support in PMS/installd for /data/data.
– Only runs once per change to seapp_contexts.

• init.<board>.rc files can call restorecon_recursive for 
other partitions (e.g. /persist, /factory).

• No more unlabeled files!

Recursive restorecon
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● SELinuxTest
– Policy must not contain any booleans.
– Policy must pass a core set of neverallow & allow  checks.

● SELinuxDomainTest
– Running services  must have the correct domain, executable, 

and cardinality.
– No processes other than init in the init domain.
– No non-kernel threads in the kernel domain.

New CTS tests
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● logd
– New userspace log daemon created by Google.

● Includes audit support.
– Derived from SE for Android auditd code.

● SELinux denials now visible in logcat!
– Look in logcat rather than dmesg.

Denials via logcat
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● Dropped separate app domains for build keys 
other than platform certificate (shared_app, 
media_app, release_app).

● Coalesced to untrusted_app domain.
● Can still split out specific apps via 

mac_permissions.xml and seapp_contexts.

App Domain Reduction
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● mac_permissions.xml:

<signer signature="@BROWSER" >
    <package name="com.android.browser" >
        <seinfo value="browser" />
     </package>
</signer>

● seapp_contexts:

user=_app seinfo=browser domain=browser_app type= 
app_data_file

App Labeling by Certificate + Package
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• Middleware MAC
• TrustZone and Virtualization

Beyond SELinux
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• Install-time MAC: Whitelist/disable apps.
– Even pre-installed ones.

• Enterprise Ops: Control app operations.
– Extension to AppOps mechanism introduced in 4.3.
– Obsoletes our older permission revocation mechanism.

• Intent Firewall: Control app interactions.
– Introduced in Android 4.3.
– Obsoletes our older intent MAC mechanism.

Middleware MAC
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• Leveraging TrustZone to enable trusted boot, sealed 
storage and remote attestation.

• Leveraging hardware virtualization to confine driver 
vulnerabilities and to enable protection and assured 
invocation of critical services.

• See my NDSS'13 keynote:  Laying a Secure 
Foundation for Mobile Devices

– http://www.internetsociety.org/doc/laying-
secure-foundation-mobile-devices

TrustZone and Virtualization
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• Send email to seandroid-list-join@tycho.nsa.gov to 
join the public SE for Android mailing list.

• Private email just to our SE for Android team: 
seandroid@tycho.nsa.gov

• Source code: https://bitbucket.org/seandroid
• Wiki: http://selinuxproject.org/page/SEforAndroid

Questions?
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• Android SELinux docs, 
https://source.android.com/devices/tech/security/se
-linux.html

• The SELinux Notebook, 
http://www.freetechbooks.com/the-selinux-
notebook-the-foundations-t785.html

• NSA SELinux docs, 
http://www.nsa.gov/research/selinux/docs.shtml

• SELinux community wiki, selinuxproject.org

Other Resources
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● Extra slides that may be helpful for reference.

Reference Material
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• allow <domains> <types>:<classes> { <permissions> };
– <domains>: process domains
– <types>: object types
– <classes>: kind of objects, e.g. process, file, dir (directory), ...
– <permissions>: operations on <classes>, e.g. read, write, 

create, execute, ...
● Classes and permissions defined by security_classes, 

access_vectors.
● Common groupings provided by global_macros, te_macros.

Type Enforcement (TE) Allow Rules
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• type_transition <domains> <types>:<classes> <new-type> <optional-
component-name>;

– <domains>: process domains
– <types>:types of related objects (e.g. executable, parent directory)
– <classes>: kinds of object, e.g. process, file, dir (directory), ...
– <new-type>: new type to assign to process or object
– <optional-component-name>: optional file name for name-based 

transition
● Helper macros in te_macros (init_daemon_domain, 

domain_auto_trans, file_type_auto_trans).

Type Enforcement (TE) Transition Rules
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● Label /data/misc/wifi/sockets with wpa_socket 
type when created by wpa_supplicant (wpa.te):

type_transition wpa wifi_data_file:dir wpa_socket 
"sockets";

● Preserve upon a restorecon_recursive 
(file_contexts).

/data/misc/wifi/sockets(/.*)?   u:object_r:wpa_socket:s0

File Type Transition Example
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● fs_use

– Tells SELinux how to label filesystem types.
– Kernel code and configuration must support the 

specified behavior or it will not work!
• genfs_contexts: Generic filesystem security contexts

– Labels for filesystems that do not support labeling.
– Per-file labeling for /proc files.

Other Policy Source Files
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● mls: Multi-level Security (MLS) configuration
– Only relevant if assigning levels using level= or 

levelFrom= in seapp_contexts.
– Not relevant in AOSP policy.

● roles, users
– Role and (SELinux) user declarations.
– Only one of each in AOSP policy.

Other Policy Source Files
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● Do NOT modify any of the following files!

– They are linked to kernel definitions.
● security_classes, access_vectors

– Define class and permission definitions.
● initial_sids, initial_sid_contexts

– Predefined security contexts used by kernel.
● policy_capabilities

– Enables optional kernel/policy features.

Other Policy Source Files
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