
@k_bankoleOpenWhisk.org

The OpenWhisk
Platform
Cloud native • Serverless • Event driven •
Microservices

@k_bankoleOpenWhisk.org

What you will learn today

• How cloud computing has recently evolved to enable
developers to write cloud native applications better,
faster, and cheaper using serverless technology.

• How OpenWhisk provides an open source platform to
enable cloud native, serverless, event driven
applications.

@k_bankoleOpenWhisk.org

Introducing
serverless,
event driven
computing

@k_bankoleOpenWhisk.org

Cloud advances mean developers can write apps better, faster, and cheaper

Bare
metal

Virtual
machines

Containers
Functions

Decreasing concern (and control) over stack implementation

In
cr
ea
si
ng
 fo
cu
s
on
 b
us
in
es
s
lo
gi
c

@k_bankoleOpenWhisk.org

What is “Serverless”?

•Allows Developers to offload operational tasks, such as
hosting, scaling

• “Function as a service”, similar to “Platform as a Service”

• Treats compute resources as utilities

•Solutions being offered by Amazon, Microsoft, Google

@k_bankoleOpenWhisk.org

VMs vs Containers

@k_bankoleOpenWhisk.org

Many workloads match serverless, event driven programming

Execute app logic in response to database triggers

Execute app logic in response to sensor data

Execute app logic in response to cognitive trends

Execute app logic in response to scheduled tasks

Provide easy server-side backend for mobile app

@k_bankoleOpenWhisk.org

It’s expensive to scale microservices

Explosion in number of
containers / processes:

1. Increase of infrastructure
cost footprint

1. Increase of operational
management cost and
complexity

Region BRegion A

Break-down into microservices

Make each micro service HA

Protect against regional outages

Monolithic application

@k_bankoleOpenWhisk.org

Programming and pricing models aren’t efficient

• Continuous polling needed in the absence of an
event driven programming model.

• Charged for resources, even when idle.

• Worries persist about capacity management.

Swift

Application

Container VMCF

2

Polling

1b

Request

1a

@k_bankoleOpenWhisk.org

Billing model offers a better match between app and resources

Applications charged by compute
time (millisecond) rather than

reserved memory (GB/hour).

While many applications must still be deployed in a daemon

model, serverless provides an alternative that can mean
substantial cost savings for a variety of event driven workloads.

Greater linkage between cloud
resources used and business

operations executed.

@k_bankoleOpenWhisk.org

Serverless offloads most cloud native app 12 Factor concerns

I Codebase Handled by developer (Manage versioning of functions on their own)

II Dependencies Handled by developer, facilitated by serverless platform (Runtimes and packages)

III Config Handled by platform (Environment variables or injected parameters)

IV Backing services Handled by platform (Connection information injected as parameters)

V Build, release, run Handled by platform (Deployed resources are immutable and internally versioned)

VI Processes Handled by platform (Single stateless containers often used)

VII Port binding Handled by platform (Actions or functions are automatically discovered)

VIII Concurrency Handled by platform (Process model is hidden and scales in response to demand)

IX Disposability Handled by platform (Lifecycle is hidden from the user, fast startup and elastic scale is prioritized)

X Dev/prod parity Handled by developer (The developer is the deployer)

XI Logs Handled by platform (Developer writes to console.log, platform handles log streaming)

XII Admin processes Handled by developer (No distinction between one off processes and long running)

@k_bankoleOpenWhisk.org

Technological and business factors make serverless compelling

Serverless platforms and frameworks are gaining traction

Cost models are getting more efficient

Event driven workloads need automated scale

Cloud is evolving to facilitate 12 Factors design for developer

@k_bankoleOpenWhisk.org

Enter OpenWhisk,
a fabric and platform for
the serverless, event
driven programming
model

@k_bankoleOpenWhisk.org

OpenWhisk provides an elegant solution

OpenWhisk is a cloud platform
that executes code

in response to events

@k_bankoleOpenWhisk.org

Triggers, actions, rules (and packages)

Services define the events they emit as triggers.
Developers associate actions to handle the events via rules.
Packages are used to bundle and distribute sets of actions

T A R P

@k_bankoleOpenWhisk.org

Triggers

A class of events that can happenT

Social events

Data changes

Device readings Location updates

User input

@k_bankoleOpenWhisk.org

Actions

Code that runs in response to an event
(that is, an event-handler)

A

@k_bankoleOpenWhisk.org

Actions

Can be written in a variety of languages, such as
JavaScript, Python, Java, and Swift

A

function main(msg) {
return { message: 'Hello, ' + msg.name + ' from ' + msg.place };

};

@k_bankoleOpenWhisk.org

Actions

Or any other arbitrary binary with DockerA

@k_bankoleOpenWhisk.org

Actions

Can be composed to create sequences that
increase flexibility and foster reuse

A

AA := A1 + A2 + A3

AB := A2 + A1 + A3

AC := A3 + A1 + A2

@k_bankoleOpenWhisk.org

Rules

An association of a trigger to an action in a many
to many mapping.

R

R := T A

@k_bankoleOpenWhisk.org

Packages

A shared collection of triggers and actionsP

A

A read
write

T changes A translate A forecast

A post
T topic

Open
Source A myAction

T myFeed

Yours

T commit

Third
Party

@k_bankoleOpenWhisk.org

OpenWhisk execution model

Pool of actions

Swift DockerJS

Trigger

1

Running
action

Running
action

Running
action

3

OpenWhisk
Engine

2

@k_bankoleOpenWhisk.org

OpenWhisk can implement REST microservices

Incoming HTTP request, e.g.
HTTP GET app.com/customers

1

Invoke OpenWhisk
action get-customers

Browser

Mobile App

Web App

2

JS Swift Docker …

OpenWhisk

@k_bankoleOpenWhisk.org

OpenWhisk enables event driven applications

Event
Providers

Cloudant

GitHub

Weather

…

Which triggers execution of
associated OpenWhisk action

2

Slack
JS Swift Docker …

An event occurs, for example
• Commit pushed to GitHub repository
• Data entered in Cloudant

1 OpenWhisk

@k_bankoleOpenWhisk.org

Watson IOT OpenWhisk

Customer
registry

Shipping
system

SendGrid
Service
reports

actions

IBM Cloud

LOB, SoR
systems &
databases

Need a
new filter

Email:
Filter on its
way!

OpenWhisk.org @DanielKroo
k

@k_bankoleOpenWhisk.org

OpenWhisk
high level
implementation
architecture

@k_bankoleOpenWhisk.org

OpenWhisk under the hood

Consul Couch
DB

Router (NGINX)

Controller

Kafka

Invoker Invoker

Docker

Executor Executor

Docker

Java Swift

Executor Executor

NodeJS Python

1. Router receives request to
API via CLI or UI

2. Controller checks entitlement
and dispatches requests to
Kafka

3. Invokers pull requests and
start execution of the action

@k_bankoleOpenWhisk.org

Summary

@k_bankoleOpenWhisk.org

Serverless Benefits

✓ A flexible programming environment
✓ An open ecosystem of building blocks
✓ Compute task outsourcing to the cloud
✓ No servers to manage or maintain
✓ Automatic scaling to match workload
✓ Built-in fault tolerance
✓ A pay-as-you-go model

@k_bankoleOpenWhisk.org

Join us to build a serverless platform for the future!

OpenWhisk.org

dwopen.slack.com
#openwhisk

@k_bankoleOpenWhisk.org

What you learned today

• We’re in the early days of an evolution that is
empowering developers to write cloud native
applications better, faster, and cheaper

• OpenWhisk provides an open source platform to
enable cloud native, serverless, event driven
applications

@k_bankoleOpenWhisk.org

But, this is still early in the evolution of serverless

• There are still rough areas to be addressed
– Monitoring, debugging, developer tooling, workflows, and visibility

require more work. The Bluemix hosted tools such as web IDE
and console are value added services.

– Best practices and common message formats need to be distilled.
– The flexible polyglot nature of OpenWhisk must be balanced with

developer responsibility (e.g., Docker image, npm build step)

@k_bankoleOpenWhisk.org

OpenWhisk addresses many common workloads

OpenWhisk can help power
various mobile, web and IoT app
use cases by simplifying the
programming model of
orchestrating various services
using events without a dedicated
backend.

Digital app workloads Big Data/Analytics pipeline
Complex data pipelines for Big
Data/Analytics tasks can be scripted
using changes in data services or
streams for near real-time analytics
and feedback.

DevOps and infrastructure as code
OpenWhisk can be used to
automate DevOps pipelines
based on events triggered from
successful builds, or completed
staging, or a go-live event.

Microservices builder
OpenWhisk can be used to easily
build microservices given the
footprint and programming model
desired by microservices

@k_bankoleOpenWhisk.org

OpenWhisk design principles

1. Provide an open interface for event providers

2. Offer polyglot support and simple extensibility for new runtimes

3. Support higher level constructs as appropriate (e.g. action sequences)

4. Scale dynamically on a per request basis

5. Enable sharing of actions and event providers

6. Leverage best of breed open source software (Docker, Kafka, Consul, …)

7. Use the Apache 2 License

