
Volatile Range

2014 Embedded Linux Conference San Jose

Minchan Kim
LG Electronics

minchan at kernel dot org

 2

Contents

● What’s the problems?
● What is volatile range
● Use cases
● Issues
● Experiment

 3

Userspace is hungry..

● Userspace doing elastic memory management is
more and more common

– Memory ballooning

– Low memory notifier

– Per process reclaim

– madvise

● Not easy to be harmonized with system without
much pain with existing syscall

● Userspace has key information on what's the
precious resource while kernel is dumb

 4

Soft Takeoff

● mmap(2)
– Create just new vm_area_struct which manage

address range

– mmap_sem with write-side lock

● Page fault
– mmap_sem with read-side lock → page

allocation → page zeroing for security→
populate page table entry

● munmap(2)
– Kernel destroys just vm_area_struct

 5

Munmap internal

● mmap_sem with write-side lock
● detach all of pages from page table for the range
● Page free
● O(N)
● TLB flush

 6

Dilemma of Allocator

● General allocators are very sensitive to mmap_sem
for performance POV

● So, they allocate/free huge chunk by batching to
avoid frequent mmap/munmap with small chunks

● Allocators prefer madv_dontneed to munmap
● Once allocator reallocates some freed range by

munmap/dontneed, user will see lots of page fault
● Keeping garbage(ie, freed by user) causes

unnecessary IO for swapping and even OOM on
swapless system

 7

Munmap vs. madv_dontneed

munmap madv_dontneed

mmap_sem write read

Syscall overhead O(N) O(N)

TLB flush y y

Access after syscall SIGSEGV Zero

 8

Dilemma of Cache

● Normally, caching is good thing for performance
● Every program might want it
● What happens if they consume too much memory?
● What happens if they keep too small memory?
● So, we need to balance cache size with system free

memory instead of each process just considering
own cache size

 9

Questions

● When should we shrink cache?
● How much of memory should we shrink?
● Is it necessary to preserve content for reclaiming?

“Volatile range” is motivated by those

 10

What is “Volatile Range”
● A method for userland to inform the kernel that a

range of memory is safe to discard
● Hint that regeneration cost is cheaper than swap

in/out cost
● Actual freeing of the memory is done under

memory pressure
● User can try to cancel the action and be able to

quickly access any freed pages

 11

Man 2 vrange - old

● Mode : volatility
– VRANGE_VOLATILE(ie, marking)

– VRANGE_NOVOLATILE(ie, unmarking)

● int *purged : indicate whether range was purged
● If you access on purged page without unmarking

volatility, you will see SIGBUS
● On success, returns the number of bytes marked or

unmarked

ssize_t vrange(unsigned long start, size_t length, int
mode, int *purged)

 12

madv_dontneed vs. vrange

munmap madv_dontneed vrange

mmap_sem write read read

Syscall overhead O(N) O(N) O(1)

TLB flush Y Y N

Access after syscall SIGSEGV Zero Zero/Original or SIGBUS

 13

Access of page after marking syscall

● If there was purge by memory pressure and you
didn’t call unmarking of vrange, you will see
SIGBUS

● If there was purge by memory pressure and you did
call unmarking of vrange, you will see zeroed page

● If there was no purge and you didn’t call unmarking,
you will see original content but you could see
sudden SIGBUS in future

● If there was no purge and you did call unmarking of
vrange, you see original content and you never lose
the content

 14

How to use volatile ranges

● General Allocator
– Mark freed(3) range volatile

– Unmark freed(3) range right before reallocation

● Browser
– Mark invisible range of the screen volatile

– Unmark invisible range right before scroll
up/down

– If there was purged page, browser should
regenerate the contents

 15

Decompress library

● Want to decompress a compressed library file into
memory

● Mark the uncompressed code pages as volatile
● Want purge cold pages, leaving hot pages in

memory
● When they traverse a purged page, they handle the

SIGBUS and patch the page up

 16

Thread Sanitizer

● Shadow memory is 4-8x in size relative to
application memory

● Want to mark the shadow memory region(e.g.
70TB) as volatile at start up

● Preserve volatility after memory accesses to the
range so marking is zero-frequency once start up

● Doesn't matter sudden zeroing of the page but
SIGBUS is undesirable

 17

Development History

● John Stultz in Linaro started to upstream volatile
range as a feature of ashmem on Android –
Nov 2011

● I thought we could use the idea to anonymous pages
– Oct 2012

● 2013 LSF/MM – Apr 2013
● We started to collaborate to unify both features –

Jun 2013
● It made syscall very complicated – Jan 2014

https://lwn.net/Articles/468837/
http://lwn.net/Articles/528772/
http://permalink.gmane.org/gmane.linux.kernel.mm/98848
http://lwn.net/Articles/554098/
http://lwn.net/Articles/578761/

 18

What makes vrange so complicated?

● Implementation
– Duplicate management of the mmaped range(ie,

vrange and vm_area_struct)

– Hinting syscall should be minimal cost

– mmap_sem scalability

– Aging of page on swapless system

● User Requirements
– Object aging – page vs object

– Reclaim preference

– SIGBUS vs Zero page

 19

2014 LSF/MM

● Implementation
– Use vm_area_struct only

– Solve mmap_sem problem with
madvise(MADV_FREE)

– Aging on swapless system

● User Requirements
– Focused on volatility(ie, reclaim preference/aging

unit should be another syscall ex, MADV_COLD)

– We really needed SIGBUS semantic?

 20

MADV_VOLATILE

● advise : volatility
– MADV_VOLATILE(ie, marking)

– MADV_NOVOLATILE(ie, unmarking)

● Return value : indicate whether range was purged
● SIGBUS if access on purged page without

unmarking volatility

int madvise(void *addr, size_t length, int advise)

 21

Old vrange vs. New MADV_VOLATILE
munmap madv_dontneed vrange madv_volatile

mmap_sem write read read write

Marking syscall overhead O(N) O(N) O(1) O(1)

Unmarking syscall
overhead

O(1) O(N)

TLB flush Y Y N Y(unmarking)

Access after syscall SIGSEGV Zero

 22

Lazy free via MADV_FREE
● Delayed madv_dontneed and could be canceled by “store”

operation from userside

● Unmarking syscall is “store” operation from user process

● It means you never lose recent overwrite

● Unlike MADV_VOLATILE, there is no way to detect
purge and just return zero page instead of SIGBUS if
purge happens

● Benefit is to avoid page fault overhead if there is no
memory pressure and avoid swapping although memory
pressure happens

● Remove mmap_sem problem from volatile range
requirement

 23

How to use - madv_free

● General allocators could use madv_free instead of
madv_dontneed

● Garbage by free(3)ed could be discarded by kernel
when memory is tight

● If allocator reallocates marked range by madv_free
to user by malloc(3) and user writes a new data, user
doesn’t lose the recent write

● It’s okay that other data in allocated range except
recent write is zero or garbage because “man 3
malloc” doesn’t say it makes sure newly allocated
space should be zero

 24

madv_dontneed vs. madv_free

munmap madv_dontneed madv_free

mmap_sem write read read

Syscall overhead O(N) O(N) O(N)

TLB flush y y y

Access after syscall SIGSEGV Zero Zero - purged
Original – no purged

Reallocate
overhead

Mmap(2) + page
fault

Page fault Page fault – purged
None – no purged

 25

Experiment

● Ebizzy – webserver DB workload
● 4 CPU, 2.7Hz, 2G ram, jemalloc allocator

thread vanilla old vrange madvfree

1 7436 30231 15292

4 16875 56341 36320

8 16966 49239 35915

 26

TODO

● Page aging on swapless system
● Make MADV_NOVOLATILE O(1)
● SIGBUS vs Zeroed-page
● Vrange-file support for shared memory

 27

Acknowledgment

● John Stultz – Linaro
● Jason Evans – Facebook
● KOSAKI Motohiro – Fujitsu
● Johannes Weiner - Redhat

 28

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

