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Userspace is hungry..

● Userspace doing elastic memory management is 
more and more common

– Memory ballooning

– Low memory notifier

– Per process reclaim

– madvise

● Not easy to be harmonized with system without 
much pain with existing syscall

● Userspace has key information on what's the 
precious resource while kernel is dumb
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Soft Takeoff

● mmap(2)
– Create just new vm_area_struct which manage 

address range

– mmap_sem with write-side lock

● Page fault
– mmap_sem with read-side lock → page 

allocation → page zeroing for security→ 
populate page table entry 

● munmap(2)
– Kernel destroys just vm_area_struct
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Munmap internal

● mmap_sem with write-side lock
● detach all of pages from page table for the range
● Page free
● O(N)
● TLB flush
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Dilemma of Allocator

● General allocators are very sensitive to mmap_sem 
for performance POV

● So, they allocate/free huge chunk by batching to 
avoid frequent mmap/munmap with small chunks

● Allocators prefer madv_dontneed to munmap
● Once allocator reallocates some freed range by 

munmap/dontneed, user will see lots of page fault
● Keeping garbage(ie, freed by user) causes 

unnecessary IO for swapping and even OOM on 
swapless system
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Munmap vs. madv_dontneed

munmap madv_dontneed

mmap_sem write read

Syscall overhead O(N) O(N)

TLB flush y y

Access after syscall SIGSEGV Zero



 8

Dilemma of Cache

● Normally, caching is good thing for performance
● Every program might want it
● What happens if they consume too much memory?
● What happens if they keep too small memory?
● So, we need to balance cache size with system free 

memory instead of each process just considering 
own cache size
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Questions

● When should we shrink cache?
● How much of memory should we shrink?
● Is it necessary to preserve content for reclaiming?

“Volatile range” is motivated by those
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What is “Volatile Range”
● A method for userland to inform the kernel that a 

range of memory is safe to discard
● Hint that regeneration cost is cheaper than swap 

in/out cost
● Actual freeing of the memory is done under 

memory pressure
● User can try to cancel the action and be able to 

quickly access any freed pages
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Man 2 vrange - old

● Mode : volatility
– VRANGE_VOLATILE(ie, marking)

– VRANGE_NOVOLATILE(ie, unmarking)

● int *purged : indicate whether range was purged
● If you access on purged page without unmarking 

volatility, you will see SIGBUS
● On success, returns the number of bytes marked or 

unmarked

ssize_t vrange(unsigned long start, size_t length, int 
mode, int *purged)
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madv_dontneed vs. vrange

munmap madv_dontneed vrange

mmap_sem write read read

Syscall overhead O(N) O(N) O(1)

TLB flush Y Y N

Access after syscall SIGSEGV Zero Zero/Original or SIGBUS
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Access of  page after marking syscall

● If there was purge by memory pressure and you 
didn’t call unmarking of vrange, you will see 
SIGBUS

● If there was purge by memory pressure and you did 
call unmarking of vrange, you will see zeroed page

● If there was no purge and you didn’t call unmarking, 
you will see original content but you could see 
sudden SIGBUS in future

● If there was no purge and you did call unmarking of 
vrange, you see original content and you never lose 
the content
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How to use volatile ranges

● General Allocator
– Mark freed(3) range volatile

– Unmark freed(3) range right before reallocation

● Browser
– Mark invisible range of the screen volatile

– Unmark invisible range right before scroll 
up/down

– If there was purged page, browser should 
regenerate the contents



 15

Decompress library

● Want to decompress a compressed library file into 
memory

● Mark the uncompressed code pages as volatile
● Want purge cold pages, leaving hot pages in 

memory
● When they traverse a purged page, they handle the 

SIGBUS and patch the page up
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Thread Sanitizer

● Shadow memory is 4-8x in size relative to 
application memory

● Want to mark the shadow memory region(e.g. 
70TB) as volatile at start up

● Preserve volatility after memory accesses to the 
range so marking is zero-frequency once start up

● Doesn't matter sudden zeroing of the page but 
SIGBUS is undesirable
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Development History

● John Stultz in Linaro started to upstream volatile 
range as a feature of ashmem on Android – 
Nov 2011

● I thought we could use the idea to anonymous pages 
– Oct 2012

● 2013 LSF/MM – Apr 2013
● We started to collaborate to unify both features – 

Jun 2013
● It made  syscall very complicated – Jan 2014

https://lwn.net/Articles/468837/
http://lwn.net/Articles/528772/
http://permalink.gmane.org/gmane.linux.kernel.mm/98848
http://lwn.net/Articles/554098/
http://lwn.net/Articles/578761/
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What makes vrange so complicated?

● Implementation
– Duplicate management of the mmaped range(ie, 

vrange and vm_area_struct)

– Hinting syscall should be minimal cost

– mmap_sem scalability

– Aging of page on swapless system

● User Requirements
– Object aging – page vs object

– Reclaim preference

– SIGBUS vs Zero page
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2014 LSF/MM

●  Implementation
– Use vm_area_struct only

– Solve mmap_sem problem with 
madvise(MADV_FREE)

– Aging on swapless system

● User Requirements
– Focused on volatility(ie, reclaim preference/aging 

unit should be another syscall ex, MADV_COLD)

– We really needed SIGBUS semantic?
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MADV_VOLATILE

● advise : volatility
– MADV_VOLATILE(ie, marking)

– MADV_NOVOLATILE(ie, unmarking)

● Return value : indicate whether range was purged
● SIGBUS if access on purged page without 

unmarking volatility

int madvise(void *addr, size_t length, int advise)
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Old vrange vs. New MADV_VOLATILE
munmap madv_dontneed vrange madv_volatile

mmap_sem write read read write

Marking syscall overhead O(N) O(N) O(1) O(1)

Unmarking syscall 
overhead

O(1) O(N)

TLB flush Y Y N Y(unmarking)

Access after syscall SIGSEGV Zero
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Lazy free via MADV_FREE
● Delayed madv_dontneed and could be canceled by “store” 

operation from userside

● Unmarking syscall is “store” operation from user process

● It means you never lose recent overwrite

● Unlike MADV_VOLATILE, there is no way to detect 
purge and just return zero page instead of SIGBUS if 
purge happens

● Benefit is to avoid page fault overhead if there is no 
memory pressure and avoid swapping although memory 
pressure happens

● Remove mmap_sem problem from volatile range 
requirement
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How to use - madv_free

● General allocators could use madv_free instead of 
madv_dontneed

● Garbage by free(3)ed could be discarded by kernel 
when memory is tight

● If allocator reallocates marked range by madv_free 
to user by malloc(3) and user writes a new data, user 
doesn’t lose the recent write

● It’s okay that other data in allocated range except 
recent write is zero or garbage because “man 3 
malloc” doesn’t say it makes sure newly allocated 
space should be zero
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madv_dontneed vs. madv_free

munmap madv_dontneed madv_free

mmap_sem write read read

Syscall overhead O(N) O(N) O(N)

TLB flush y y y

Access after syscall SIGSEGV Zero Zero - purged
Original – no purged

Reallocate 
overhead

Mmap(2) + page 
fault 

Page fault Page fault – purged
None – no purged
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Experiment

● Ebizzy – webserver DB workload
● 4 CPU, 2.7Hz,  2G ram, jemalloc allocator

thread vanilla old vrange madvfree

1 7436 30231 15292

4 16875 56341 36320

8 16966 49239 35915
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TODO

● Page aging on swapless system
● Make MADV_NOVOLATILE  O(1)
● SIGBUS vs Zeroed-page
● Vrange-file support for shared memory
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Questions
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