
Automated Testing Laboratory
for Embedded Linux Distributions

.

Paweł Wieczorek

October 11, 2016

Samsung R&D Institute Poland



Agenda
.

1. Introduction

2. Motivation

3. Automation opportunities with our solutions

4. Future plans

5. Conclusion

1/42



Introduction
.



Automated Testing Laboratory
.

2/42



Actual Automated Testing Laboratory
.

3/42



Automated Testing Laboratory – MinnowBoard Turbot
.

4/42



Automated Testing Laboratory – Odroid U3+
.

5/42



Automated Testing Laboratory – HiKey
.

6/42



Automated Testing Laboratory – Supporting hardware
.

7/42



Automated Testing Laboratory – SD MUX
.

8/42



SD MUX
.

9/42



Motivation
.



Change life cycle
.

10/42



Change acceptance
.

11/42



Release engineering
.

12/42



Primary tools
.

Open Build Service Jenkins

13/42



Release Engineer role
.

1. Release engineer investigates build failures (if any)

2. Release engineer checks whether new images introduce any regressions

3. Release engineer approves inclusion of verified changes to the main
repository

14/42



Release Engineer headache
.

• Complete image testing on multiple devices takesmuch time:

ttotal = tdownload + ntargets × (tflash + ttest)

• Monotonous – involves repeating the same set of actions

• Requires focus – processing similar results calls for an observant person

15/42



Release Engineer dilemma
.

1. Can we test images less frequently?

2. Can we run fewer tests on new images?

3. Can we assume that successfully built packages work properly?

16/42



Release Engineer credo
.

1. Resolve an issue as soon as it is discovered

2. Look for a solution, not just workaround

3. Don't release software that was never run on an actual device

17/42



Room for improvement
.

• Complete image testing on multiple devices takesmuch time:

ttotal = tdownload + ntargets × (tflash + ttest)

• Monotonous – involves repeating the same set of actions

• Requires focus – processing similar results calls for an observant person

18/42

..

AU
TO
MA

TE



Automation opportunities
with our solutions
.



Automation tasks categories
.

• Software

• Infrastructure
• Internal
• External

• Hardware

19/42



Automation tasks examples
.

• Software

• Infrastructure
• Internal
• External

• Hardware

• Polling OBS for new images

• Getting new images from OBS

• Controlling hosts and targets

• Publishing test results

• Flashing target devices with new images

20/42



Automation tasks examples
.

• Software

• Infrastructure
• Internal
• External

• Hardware

• Polling OBS for new images

• Getting new images from OBS

• Controlling hosts and targets

• Publishing test results

• Flashing target devices with new images

20/42



Automation tasks examples
.

• Software

• Infrastructure
• Internal
• External

• Hardware

• Polling OBS for new images

• Getting new images from OBS

• Controlling hosts and targets

• Publishing test results

• Flashing target devices with new images

20/42



Automation tasks examples
.

• Software

• Infrastructure
• Internal
• External

• Hardware

• Polling OBS for new images

• Getting new images from OBS

• Controlling hosts and targets

• Publishing test results

• Flashing target devices with new images

20/42



Automation tasks examples
.

• Software

• Infrastructure
• Internal
• External

• Hardware

• Polling OBS for new images

• Getting new images from OBS

• Controlling hosts and targets

• Publishing test results

• Flashing target devices with new images

20/42



Software – polling OBS and getting new images
.

• OBS lacks event mechanism

• Human-readable naming conventions
require parsing

• New image discovery is run
on multiple levels

• Scheduling tasks

• Queueing tasks Jenkins

21/42



Internal infrastructure – reliable communication with devices
.

OpenSSH

• Depends on other services

• Requires network connection

Serial console

• Lower rate of data transfer

• Less flexible than alternatives

Default choice︸ ︷︷ ︸
SDB

(Smart Development Bridge)
22/42



Internal infrastructure – configuration management
.

• Testlab-handbook on its own is not enough

• All changes in configuration are tracked in Testlab-host

• Improved deployments

• No more snowflakes!

23/42



External infrastructure – results publishing
.

• Easily available

• With possibility for future reuse

• Preferably using existing services

• Sharing test environment information

• Publishing test results

• Providing data for future reuse
MediaWiki edited
by Pywikibot

24/42



Hardware – flashing target devices with new images
.

• Current interface focused on user interaction

• Designed for single target device per host

• Architecture-specific procedure

25/42



Hardware – SD MUX
.



Board control

Hardware – SD MUX
.



Board control

Memory
card

Hardware – SD MUX
.



Board control

Target SDB/card connection

Memory
card

Hardware – SD MUX
.



Board control

Host card connection

Target SDB/card connection

Memory
card

Hardware – SD MUX
.



Board control
Host SDB/card access

Host card connection

Target SDB/card connection

Memory
card

Hardware – SD MUX
.



Power switch

Board control
Host SDB/card access

Host card connection

Target SDB/card connection

Memory
card

Hardware – SD MUX
.



Controlling SD MUX
.

$ sdmuxctrl --help
Usage: sdmuxctrl command
-l, --list
-i, --info
-o, --show-serial
-r, --set-serial=STRING
-t, --init
-u, --status

(...)

33/42



Former work flow
.

Requires release engineer's interaction

34/42



SD MUX work flow
.

Fully automated process

35/42



SD MUX – schematics
.



SD MUX – open-source
.

https://git.tizen.org/cgit/tools/testlab/sd-mux 37/42

https://git.tizen.org/cgit/tools/testlab/sd-mux


Future plans
.



What is next?
.

• Pre-test cases development

• More detailed monitoring of differences between tested images

• Improved fail management

• Improved resource management

• System distribution

38/42



Conclusion
.



Summary
.

1. No need for reinventing the wheel in modern automation

2. Custom hardware can simplify tasks

3. Automation pays off in the long term

39/42



Questions?

39/42



Thank you!

Paweł Wieczorek
p.wieczorek2@samsung.com

Samsung R&D Institute Poland



Further read

• https://wiki.tizen.org/wiki/Laboratory

• https://wiki.tizen.org/wiki/SD_MUX

• https://git.tizen.org/cgit/tools/testlab

https://wiki.tizen.org/wiki/Laboratory
https://wiki.tizen.org/wiki/SD_MUX
https://git.tizen.org/cgit/tools/testlab


Pictures used

• https://wiki.tizen.org/w/images/9/95/Testlab.JPG
• http://openbuildservice.org/images/obs-logo.png
• https://wiki.jenkins-ci.org/download/attachments/2916393/logo.png
• https://wiki.tizen.org/w/images/5/57/Tizen_Build_Process.gif
• https://by-example.org/wp-content/uploads/2015/08/openssh-logo.png
• https://pixabay.com/en/terminal-console-shell-cmd-dos-153150/
• https://pixabay.com/en/gears-options-settings-silhouette-467261/
• https://commons.wikimedia.org/wiki/File:Notification-icon-MediaWiki-logo.svg

https://wiki.tizen.org/w/images/9/95/Testlab.JPG
http://openbuildservice.org/images/obs-logo.png
https://wiki.jenkins-ci.org/download/attachments/2916393/logo.png
https://wiki.tizen.org/w/images/5/57/Tizen_Build_Process.gif
https://by-example.org/wp-content/uploads/2015/08/openssh-logo.png
https://pixabay.com/en/terminal-console-shell-cmd-dos-153150/
https://pixabay.com/en/gears-options-settings-silhouette-467261/
https://commons.wikimedia.org/wiki/File:Notification-icon-MediaWiki-logo.svg

	Introduction
	Motivation
	Automation opportunities with our solutions
	Future plans
	Conclusion
	Appendix

