

Embedded S/W

Embedded Linux-based smartphone platform
for sharing WIPI contents

Jae-ho Lee, Sun-ja Kim, Sang-yun Lee

Wireless Internet Platform Team, Embedded S/W Technology Center, ETRI, Korea
{bigleap, sunjakim, sylee}@etri.re.kr

 Abstract  Smartphone is becoming more and more popular
in mobile market but applications running on smartphone are
much fewer than on legacy 3G mobile phones. In order to
overcome the poverty of smartphone applications, we have
developed the sharable mobile platform that can be adopted to
both smartphone and 3G mobile phone. This approach enables
many applications for 3G mobile phones to run on smartphones
without any modifications.

In this paper, we introduce the Korean standard mobile
platform called WIPI(Wireless Internet Platform for
Interoperability) and analyze its architecture in detail. Then, we
implement the middleware platform on linux-based smartphone
for the compatibility with 3G mobile applications and
incorporate it into the reference board similar to smartphone.

 Keywords  WIPI, Linux, Smartphone, Mobile Contents

1. Introduction

1.1 What is WIPI?
Korea had the first successful commercialized CDMA

mobile communications system and CDMA(3GPP2) is one of
the two main global standards for communications
technologies along with WCDMA. Korean handset
manufacturers are also making great progress in the global
market. Samsung Electronics is currently ranked third and LG
Electronics is ranked fifth for mobile handset production
worldwide [1].
 Korean telecommunication industries are attempting to
make a standard mobile platform called WIPI, which is the
common platform for running mobile applications
independent of service provider or handset vendor. Many
contents for WIPI were developed and commercialized in the
end of 2003.

Figure 1 Motivation of emerging WIPI

Figure 1 describes the motivation for the development of WIPI.
There are three big mobile carriers in Korea; SK Telecom,
KTF and LG Telecom. Before the emergence of WIPI, KTF
had adopted BREW as its mobile platform, while the other two
carriers SK Telecom and LG Telecom used independent
wireless technology based on J2ME. Because the three mobile
operators have different technologies, content providers had to
pay additional development costs due to modification which
occurred several times to make the contents suitable for each
mobile service provider. In addition, the availability of
multiple platforms was one of the hindering factors that
allowed proprietary wireless networks and suppressed
freedom of content usage.

A common mobile platform benefits carriers, handset
vendors, content developers and customers. The benefits
towards each sector are highlighted below:
Carriers: fast delivery of new applications and services, more
downloadable services over-the-air(OTA)
Handset vendors: reduction in engineering cost and time,
easy working with 3rd party developers
Contents developers : open standard mobile platform for
developing high quality contents, wider distribution channel
and wider array of content services
Customers : choice of various contents independently for
wireless carriers and handset vendors

The latest version of WIPI is 2.0, released by Korea
Wireless Internet Standardization Forum (KWISF) that
consists of about 30 Korean telecommunication industries.

Telecommunication Technology Association (TTA) in
Korea adopted WIPI as a national mobile standard platform,
which means all mobile handsets must support WIPI. In the
near future, with WIPI technology-enabled handsets,
consumers will be able to personalize their handset with
applications such as games, infotainment, and location-based
services. The advent and development of WIPI will pave the
way for Korean telecom companies to lead the global wireless
Internet industry.

1.2 Future of Linux-based smartphone

The 3G mobile communication system will be a significant
step forward in the convergence of telecommunication and
data communication industries. Enhancing the smartphone to
merge multiple functions such as voice, data, internet and
multi media services will meet these requirements.

Adoption of full-feature handsets – mobile terminals based
on full-feature operating systems such as Palm, Linux or
Windows Mobile - will represent the next stage of technology
evolution in the mobile handset market, as shown in Figure 2.
These devices will provide significantly greater design

Embedded S/W

flexibility to OEMs, ease the process of launching new mobile
interactive services, and put new advanced computing
capabilities in the pockets of consumers [3].

Figure 2. Full-feature handset market

Linux may become the preferred operating system in
full-featured mobile terminals as well as a variety of
embedded systems. The world of telecommunications,
electronics and service industries are closely watching
whether linux will dominate the smartphone market and the
development of the linux-based smartphone for
commercialization. For examples, Motorola announced its
first embedded Linux based smartphone, A760, earlier last
year. NTT DoCoMo, has adopted Linux for its 3G phone.
Samsung is shipping a smartphone powered by embedded
Linux from Mizi Research. This mobile teminal, SCH-i519, is
being distributed in China currently.
Table1 shows that Linux will dominate the smartphone market,
beating out rival operating systems. Zelos[3] says that Linux
scored the highest on the two criteria that matter most to
OEMs and carriers: open-ness and low cost.

Table1. Long-Term success scores for mobile platforms

Linux-powered smartphone will hold an important position
in the near future, so rich applications as well as new mobile
platforms will be required. It may be an ideal case that existing
content already developed for legacy 2G or 3G mobile phones
are executable on smartphone without any changes. The
remainder of this paper investigates the exis ting mobile
platform, the WIPI, and presents our approach to adopt the
WIPI platform on smartphone.

2. Analysis and Design

2.1. WIPI architecture for mobile terminal

There are worldwide platforms such as J2ME of SUN,
BREW of QUALCOMM, Symbian etc. Comparing with other
platforms WIPI has several key advantages as the handset
platform of choice for interoperability.

WIPI supports multiple programming languages such as
C/C++ and Java, and downloads and runs all applications as a
type of binary from the contents distribution server. Although
the application is written in java language, ahead-of-time
compiler (AOTC) converts byte code compiled by java

compiler (javac) into machine code that can be directly
executed on handset.

Figure 3. General WIPI architecture

Figure3 shows the general WIPI architecture. The lowest
layer consists of hardware, OS, and native software. For
CDMA enabled-handset, Qualcomm’s REX/DMSS is used.
For smartphone, native system software is based on WinCE or
Linux, Symbian, PalmOS etc.

The handset adaptation layer (HAL) provides high
portability for the above layers such as runtime engine,
WIPI-C, WIPI-JAVA and WIPI applications. HAL hides the
complex operation of the underlying hardware devices and
simplifies the access and control of them.

Runtime engine provides the execution environment for
WIPI applications like java virtual machine (JVM) in Java
world. The main difference is that JVM loads and executes
java class files while WIPI engine takes and executes
platform-specific machine code. Runtime engine consists of
linker/loader, memory manager, garbage collector, thread
manager, synchronization manager and runtime library for
supporting the converted code. Event handler and exception
handler are needed for preserving the semantic of the java
language.

API layer provides both C libraries and Java libraries for
applications developing Clet, Jlet, or MIDlet. Clet is a
program written in WIPI-C and Jlet is written in WIPI-Java.
WIPI 2.0 version also provides the compatibility with MIDlet.
MIDlet is a small application written in CLDC/MIDP of J2ME
platform. Each WIPI application has an event handler and the
life cycles such as start, pause, destroy and resume.

WIPI application manager(WAM) installs, deletes, lists, or
searches applications. WAM can be also written using WIPI
library.

2.2. More WIPI technology

The previous section explained the WIPI software
architecture installed on the mobile terminal. But there are
additional tools that help developers test and emulate WIPI
applications, or verify and certify the platform on specific
hardware.

AOTC internally consists of 2 main parts, a Java-to-C
translator and a cross-compiler. Java-to-C translator converts
java class files into C source code, and then cross-compiler
converts it into directly executable image. WIPI-JAVA
implementation includes about 300 native functions, used for
performance improvement or direct access to hardware
resources. Because the native code is dependant on the
underlying operating system, it has to be rewritten for each
platform. These native functions written in C must be linked

Embedded S/W

with java classes translated by Java-to-C translator. The details
are beyond the scope of this overview. There are several
research papers on AOTC technologies such as GCJ[4],
Caffeine[5] and Toba[6].

WIPI emulator provides an integrated development
environment (IDE) for WIPI content developers who may
have difficulty in accessing the handset platform. Once WIPI
application runs without any problem on WIPI emulator, it
insures that the application is interoperable with WIPI
platform on any device.

Now, WIPI implementation has been only ported to
CDMA-enabled handset and WIN32-based PC for emulating
WIPI. In order to check the interoperability of implementation
from different company, each platform is tested, verified or
certified by platform certification toolkit (PCT) and HAL
certification toolkit (HCT)

TestCase

Test Result

Serial/Network

Test Case
DB server

JDBC

WIPI platformWIPI platform
AgentAgent

Co
nn

ec
tio

n
m

an
ag

er

User Interface

Test case
Loader

Test case
Manager

Result
Reporter

Test case
Finder

DB connection manager

TestCase

Test Result

Serial/Network

Test Case
DB server

JDBC

WIPI platformWIPI platform
AgentAgent

WIPI platformWIPI platform
AgentAgent

Co
nn

ec
tio

n
m

an
ag

er

User Interface

Test case
Loader

Test case
Manager

Result
Reporter

Test case
Finder

DB connection managerCo
nn

ec
tio

n
m

an
ag

er

User Interface

Test case
Loader

Test case
Manager

Result
Reporter

Test case
Finder

DB connection manager

Certification Toolkit

Figure 4. PCT overview

PCT is a suite of tests, tools that determines whether or not a
WIPI library (WIPI-C/WIPI-JAVA) implementation complies
with WIPI specification. As shown in Figure4, PCT consists
of 3 different parts; PCT tool on host, database server for
saving test suites and PCT agent on mobile terminal. These
parts are developed and managed by specific companies that
are authorized by KWISF memberships. Database sever
contains sharable test case suites for verifying the platform.
The tool is a GUI-based tool that communicates with PCT
agent. PCT agent program is a Clet or Jlet, so it is
downloadable through distributed channel in wireless
environment and executable on WIPI. To check the
interoperability of the platform, PCT server sends test query to
PCT agent. PCT agent receives it and executes server’s order
by using built-in WIPI library on mobile terminal, then sends
the results to server. Finally, server determines whether or not
platform complies with standard specification, by comparing
the result to the value stored in its database.
 HCT is a suite of tests, tools that checks whether or not HAL
implementation complies with WIPI specification. It is used
by mobile terminal vendors to test whether the HAL is
correctly ported to their product. It also consists of sever side
and client side like a PCT. Because HAL is ported to
vendor-specific software at first step, HCT agent has to be
developed using native software, not WIPI library. This means
HCT agent needs to be rewritten for every target platform. The
process of verifying the platform is very similar to PCT.

Until now, there has been no study on HCT, while
commercial-quality PCT was already developed by
EXE-MOBILE in 2003. This paper implements HAL for
linux-based smartphone and verifies by HCT that we designed

and developed. This work will be the starting point of WIPI
reference implementation for linux-based smartphone.

3. WIPI platform for linux-based smartphone

WIPI 1.2-based reference implementation exists only for
REX-based handset platform and WIN32-based emulator at
current work, in spite of the trends in increasing the number of
smartphone-type mobile terminal users. Our approach designs
and implements embedded linux-based smartphone platform
complying with WIPI specification. It has important meaning
that existing contents or tools for supporting WIPI service –
already developed Clet/Jlet/MIDlet, AOTC, PCT, HCT,
contents distribution server - can be reusable without any
modification or with at least limited modification.

This section designs the prototype of smartphone software
architecture to support WIPI, implements HAL and HCT, and
verifies HAL using HCT.

3.1. Smartphone architecture

Figure 5 shows the embedded linux-based smartphone
software stack containing WIPI. HAL is implemented with
Qplus[10] and linux-based libraries, instead of REX/DMSS in
CDMA-enabled handset. Qplus is a highly configurable
embedded linux system developed by ETRI in Korea. Qplus
supports various embedded system such as HomeServer of
ETRI, iPAQ of Compaq, Zaurus of sharp and S3C2400 of
Samsung.

Figure 5. Linux-powered smartphone stack

TAPI provides telephony API to handle modem or external
CDMA card. TinyX/GTK2 is used for creating GUI on LCD.
Glibc is used as the standard C library in the linux system.

HAL is implemented using native software such as Glibc,
TAPI, GTK2/TinyX. HCT agent is a kind of linux application
that can communicate with HCT server to verify the HAL
implementation on linux-based smartphone.

Runtime engine and WIPI libraries are also rewritten in
linux-based code, while WAM can be reusable because it was
developed with WIPI library for handset platform.

The next section focuses on HAL and HCT as the starting
point of WIPI reference implementation for smartphone.

3.2. HAL and HCT

HAL APIs for the linux-based platform provide the
following functions for each part.
System: gets or sets the mobile terminal information for
platform, protects critical section, initializes or exits the
platform, synchronization etc.

Embedded S/W

Call: controls telephony device.
Handset device: controls LED, backlight, vibrator, etc.
Network: opens, accesses or closes the network(socket)
Serial: opens, closes, reads, writes and controls serial
Media: controls multi-media devices, processes and plays
multi-media data
Time: generates and manages system or user-defined timer
Utility: converts between unicode and local code
File: handles file or directory.
Input method: processes character input
Font: processes font
Frame buffer: print the data onto the screen or LCD
Virtual key: maps between function keys on application and
keys on mobile terminal
 HCT is an easy-to-use GUI-based tool for testing, verifying,
certifying the HAL implementation for each platform. The
tool consists of project manager and report manager as shown
in Figure 6. The Project manager creates, deletes and modifies
project from its menu. During project creation, in order to
determine where parts of HAL are to be tested, test cases list
should be configured from pre-defined test suites list in HCT
database. The tool sends the user-defined test cases to the HCT
agent. The agent executes the test cases on iPAQ and returns
the result to the tool. While communicating with agent, report
manager shows the processing status of HAL API. After
completion of test, the summary of results is saved in the form
of HTML file to enable ease of view later.

4. Experimentation

HAL is deeply dependent on the underlying operating
system and physical device. Especially, it is very difficult to
develop HAL for the latest original equipment manufacturer
(OEM) devices because most of vendors do not open hardware
specification or device driver code. So we select iPAQ of
Compaq as the reference hardware for building and testing
linux-supported WIPI platform, where it is easy to update
kernel and add custom functionality as required by developers.

Comparing with iPAQ, commercial handsets have different
device features, small size screen window and
telephony-related interface. Vibrator and telephony-related
operation in handset are replaced by icons in iPAQ. Display
window size is also reduced to 160x240 for the existing WIPI
contents developed for phone as shown in Figure 6.

The operation between HCT tool on Windows-based PC
and HCT agent on Qplus-enabled iPAQ is denoted in Figure6
and Figure7.

Figure 6. HCT agent on iPAQ

Fingure 7. HCT on host

5. Conclusion and future work

This paper introduces the mobile trends in Korea and
explains the WIPI platform, which is aimed at providing
contents interoperability among mobile operators. Now, WIPI
technology has already been formalized in commercial mobile
terminals as national standard in Korea. Many WIPI
applications have also been developed using the WIPI
emulator.

This paper demonstrates the current WIPI platform and
expands the embedded linux area to enable legacy 3G mobile
contents to be executed on linux-powered smartphone without
any modification. It means WIPI platform has high possibility
to be applied as new mobile platform for another mobile OS
such as Symbian, Palm, Nucleus as well as linux or REX.

Currently we have developed some part of the WIPI
reference implementation and HAL API for linux-based
smartphone. But we plan to implement WIPI library and
runtime engine by the end of 2004, and then add more test
suites to PCT or HCT. In AOTC technology, to run Java-based
WIPI application, research topics such as reducing the
converted code size and runtime library size are bleeding edge
research areas. We are pursuing advanced research in reducing
the size of the code converted by AOTC in resource-limited
mobile terminals.

REFERENCES

[1] Strategy Analytics, “Global Handset Market”, market report,

http://www.strategyanalytics.com
[2] http://www.linuxdevices.com.
[3] Seamus McAteer, “Defining the market for fullfeatured handset ”, Zelos

Group, Inc.
[4] “Guide to GNU gcj”, http://gcc.gnu.org/java/
[5] Cheng-Hsueh A.Hsieh, John C.Gyllenhaal, and Wen-mei W.Hwu, “Java

Bytecode to Native code Translation: The Caffeine Prototype and
Preliminary Results” Proceedings of the 29th International Symposium
on Microarchitecuture, December 1996.

[6] T.A.Proebsting, G.Townsend, P.Bridges, J.H.Hartman, T.Newsham, and
S.A. Watterson, “Toba: Java for Applications – A Way Ahead of
Time(WAT) Compiler”, Proceeding of the Third Conference on
Object -Oriented Technologies and Systems(COOTS), USENIX
Association Press, 4153; 1997

[7] KWISF, WIPI 1.2 specification, www.wipi.or.kr
[8] KWISF, WIPI 2.0 specification, www.wipi.or .kr
[9] WIPI developer site, www.developer.wipi.or.kr
[10] Embedded S/W Technology Center, ETRI, QPlus, http://qplus.etri

