Herd Your Boards, Become a Farmer Embedded Linux Conference Europe 2016

Geert Uytterhoeven

geert@linux-m68k.org

Glider byba

Tuesday, October 11

Table of Contents

About Me

Introduction

Building Blocks

Power Control

Console

Network

Interaction

Management Host

Power Supply

Software

Final Words

About Me (and Linux)

Hobbyist

1994 Linux/m68k on Amiga

1997 Linux/PPC on CHRP

1997 FBDev

Sony

2006 Linux on PS3/Cell

SONY

Glider byba

2013 Renesas ARM-based SoCs

Why a Board Farm?

Board on Your Desk

Advantages

- Easy to setup
- Easy to interact with

Disadvantages

- X One too many boards (boards are cheap), outgrowing your desk
- X Too much noise
- X Home Office: Significant other, family members

How many boards on your desk?

Why a Board Farm?

Organizing Development Boards in a Board Farm

Advantages

- Less clutter on your desk
- ✓ Centralization
- Automation
- √ (Worldwide) Remote access
- √ Board sharing

Disadvantages Challenges

- X (More) Complex setup
- X How to interact with your board?

Board Farm Requirements

Basic

Power & Serial Console

Intermediate

- ▶ Reset (≠ powercycle ≠ software reboot)
- Wake-Up
- Soft Power-On
- Input buttons
- Measure Power Consumption

Advanced

- Video in & out
- ▶ ... (add yours) ...

Board Farm Building Blocks

Single Development Board

Board Farm Building Blocks

Board Farm

Power Outlet Control

- Classical solution
- Multiple interface options (Ethernet/serial)
- Metering
- Fine for your freezer or washing machine
- Overkill for many low-power embedded boards

Relay Board

- Multiple interface options (GPIO, I2C, USB, Ethernet)
 - Beware multiple boards with identical MAC addresses!
- Overkill for many low-power embedded boards

BayLibre ACME

- Cape for BeagleBone Black
- OR ... connect to anything that has an I2C bus
- ▶ Up to 8 channels (× max. 2 capes)

BayLibre ACME

- Power Control and Voltage/Current Monitoring:
 - Jack Power Probe (2.1/5.5mm Center-pos, up to 20V/6A)
 - USB Power Probe (Mini-B, up to 1A)
 - ▶ Not good enough for the z890 ¨
- Measurement only:
 - ► HE10 Power Probe (up to 150mA/1.5A/10A)
 - Temperature Probe

Power Measurement

Power Consumption $P = U \times I$

- Measure Voltage U
- Calculate Current I:
 - Measure Voltage U across a small Measurement Resistor R

Ohm's law:

$$U = R \times I \Leftrightarrow I = \frac{U}{R}$$

Whole board / Subsystem power rails / Component

Console

- Serial consoles
 - ▶ Legacy DB9/DB25 serial → USB-serial adapter
 - ▶ 1.8V/3.3V/5V UART \rightarrow USB-serial adapter
 - On-board USB-serial chip
 - 96Boards UART
- USB hub with many ports (may need power)
- Use udev rules to pin names to your serial ports

```
/etc/udev/rules.d/99-usb-serial.rules
```

```
SUBSYSTEM=="tty", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6001", \
ATTRS{serial}=="A900YDVW", SYMLINK+="tty-ape6evm"
SUBSYSTEM=="tty", DRIVERS=="mos7840", ATTRS{port_number}=="0", \
SYMLINK+="tty-aten0"
```

Beware USB-serial chips with identical serial numbers! Fortunately USB devices can be addressed by topology /dev/serial/by-path/...

Network

- Ethernet Switch
 - Beware multiple boards with identical MAC addresses!
- Wireless Access Point
- Similar to networking normal Linux machines

- Mostly input and control
- Output: complicated beyond console
- May require creative and custom solutions

Switches and Buttons

- System Reset
- System Wake-Up
- Soft Power-On
- Generic input (e.g. keypad)
- **.** . . .

Signal Inputs

- 2.54mm Female/Male Header
- 2 mm Female/Male Header

lmage sources: http://http://elinux.org/, http://www.96boards.org/

Signal Inputs

► Unpopulated Header → Solder header

 $\blacktriangleright \ \, \text{Test Point} \to \text{Test Clip or Hook}$

Signal Inputs

► High-Density Connector Breakout: Buy ...

Image sources: http://www.96boards.org/, http://zebax.com/

Signal Inputs

High-Density Connector Breakout: ... or Build

► Extreme Wiring on the Prototyping Board
http://elm-chan.org/docs/wire/wiring_e.html

Switches and Buttons: Trips & Tricks

- Solder to switch, or other component
- JTAG has reset
- Wake-Up needs an IRQ, or GPIO with interrupt capability
- Add any GPIO on expansion connector to gpio-keys in DT, to avoid having to solder a wire to a switch
- Caveats:
 - Signals are usually asserted by grounding
 - Sometimes asserted by pulling high (to which voltage?)
 - Positive voltage supply may be missing on connector ~

Switches and Buttons: GPIO

```
keyboard {
        compatible = "gpio-keys";
        pinctrl-names = "default";
        pinctrl-0 = <&keyboard_pins>;
        key-wakeup {
                gpios = <&gpio2 1 GPIO_ACTIVE_LOW>;
                label = "EXIO-D-50";
                linux,code = <KEY_WAKEUP>;
        };
};
&pfc {
        keyboard_pins: keyboard {
                pins = "GP_2_1";
                bias-pull-up;
};
```


How to Control All Those Signals?

- ► GPIOs with/without driving Transistors/MOSFETs
 - X No isolation
- Relays
 - Electromagnetically Controlled Switch

- √ Isolation
- √ Relay Boards readily available
- X Noisy
- X Overkill for most input signals

How to Control All Those Signals?

- Opto-Isolators
 - Light Controlled Switch

- Isolation
- ✓ Can switch +1.8V, +3.3V, +5V, ...
- Add a relay if needed
- Polarity!

Eight Opto-Isolators Driven by I2C GPIO Expander

Management Host

- Control and monitor all blocks
- Provide services
- Old PC, embedded x86
- Embedded Development Boards becoming more powerful
 - ► E.g. BeagleBone Black, Raspberry Pi, ...

Beagle Bone Black Console Bed

Board Farm Bird View

Power Supplies

- Each board comes with its own power supply
- Wall wart rats nest

Can we improve upon?

Board Power Needs

- Most boards take either 5V or 12V
- Different connectors types, voltages, and polarities
 - 2.1/5.5mm or 2.5/5.5mm jack
 - ► 5V, 7.5V, 9V, 12V, ..., up to 9A
 - Most (not all!) are Center-positive

EIAJ connector, Center-positive, 2A

```
#1 0-3.15V 2.35/0.7mm

#2 3.15-6.3V 4.0/1.7mm

#3 6.3-10.5V 4.75/1.7mm \leftarrow 96Boards 8-18V \stackrel{\sim}{\sim}

#4 10.5-13.5V 5.5/3.4/1.0mm

#5 13.5-18V 6.5/4.4/1.4mm
```

- USB mini/micro-B
- Need for conversion when used with ACME

Identical and Low Power Needs

- Powered USB hub for e.g. Beowulf of Raspberry Pis
- Barrel jack splitters (2-way, 4-way)

 Usually limited to 2A, maximum current is seldom advertized

Single Power Supply

- My needs:
 - 8 Boards + Management Host & Control Hardware
 - ► 13A @ 5V → 65W
 - ≥ 28A @ 12V → 336W
 - Absolute maximum ratings!
- Lab power supply
- PC power supply

Multiple Output Voltages

- +5V For development boards
- +12V For development boards
 - Single or Dual Rail!
- +3.3V For an MSP430 LaunchPad?
 - -12V Not so useful without real RS232

Management Host Features

+5Vsb +2A is ample

PS_ON Remote control

Minimum Load?

Older supplies may need some load to work

- Look for Haswell C6/C7 Zero Load Support
- Use e.g. Ethernet switch as load, or load resistors

Voltage Stability / Power Rail Cross Impact

- Not so much of an issue anymore
 - Single rail 12V with DC/DC converters for 3.3V and 5V
 - SoCs run at low voltages, board has own PMIC
 - Boards that need stable +5V signals typically run from 12V
 - Any boards that still need stable +12V signals?
- Power Supply needs some time to stabilize!
 - Turn power supply on first, individual boards last
 - Turn individual boards off first, power supply last
 - PWR_OK signal

Safety

Watch out for high currents!

- Typical 650W PC Power Supply
 - ▶ 52A @ 12V
 - 22A @ 5V
 - Low voltage, but high current, needs thick wires
 - My induction stove needs only 32A (@ 230V, though)
- Do not feed everything from one wire!
 - 4A per wire
 - Modular Power Supply can still be handy
- Fuses for individual boards
 - The PS should be designed to survive a short circuit
 - Your Raspberry Pi may not (@ 20A)

Tips & Tricks

- Use Ethernet switch with 12V input (some need e.g. 7.5V)
- Most USB hubs need 5V
- +12V rail is the major rail on modern supplies
- ► +5V limited to 20–25A, independent of total wattage
- Many boards that need 5V? → add a DC/DC converter

Before 3D Printing, There Existed LEGO

Before 3D Printing, There Existed LEGO

Beau Barrier Strips — Fuses — Eurostyle Barrier Strips

GPIO Control

Add PFC8574 GPIO expander at I2C address 0x24:

Toggle reset line at gpio 480 using sysfs:

```
echo out > /sys/class/gpio/gpio480/direction
sleep 0.2
echo in > /sys/class/gpio/gpio480/direction
```

Should try new GPIO chardev interface . . .

Software Side

ACME

- Sigrok integration
- PulseView GUI
- Command line

```
# sigrok-cli --driver=baylibre-acme --samples=1
FRAME-BEGIN
P1_ENRG_PWR: 1.225000 W
P1_ENRG_CURR: 0.246000 A
P1_ENRG_VOL: 5.019000 V
...
FRAME-END
```

- sysfs GPIO for board power control, or sigrok-cli
- ACME powers on all boards during boot up ~
 - → Edit /etc/init.d/S95acme-init:

```
- echo 1 > /sys/class/gpio/gpio$GPIO/value
+ echo 0 > /sys/class/gpio/gpio$GPIO/value
```


Software Side

Big collection of scripts:

```
main-power-{on,off,status}

<board>-power-{on,off,status}

<board>-acc-{on,off,status}
```

<board>-{reset,wakeup}

> . . .

```
ape6evm
         : 4.850000 W
                          0.406000 A 11.928000 V
armadillo : 3.025000 W
                          0.620000 A 4.893000 V
h3-salvator-x : 9.625000 W
                          0.812000 A 11.851000 V
kzm9a
            : 1.800000 W
                          0.364000 A 4.938000 V
rbt.x4927 : 2.425000 W
                          0.490000 A 4.901000 V
              1.225000 W
                          0.250000 A
                                      4.879000 V
rpi
Total
              22.95 W
Total at 5V : 8.475 W
                             1.724 A
Total at 12V : 14.475 W
                             1.218 A
```


Software Side

- Booting (TFTP / DHCP / NFS root): cfr. board on your desk
- TODO: Automated boot
 - Boot testing
 - Auto-bisecting regressions
 - Join kernelci.org?
 - Q How can I participate in the boot test phase?
 - A The best way to participate is to send us your boards

Source: https://kernelci.org/faq

Advanced Features

My Board Farm fulfills **my** requirements.

You may want:

- JTAG
- VNC for display output
- Board sharing
- Virtualization to isolate multiple users
- **.** . .

Final Words

What have I learned?

- Improved soldering skills
- Modern PC power supplies work with zero load
- It takes a while to get the details right

What can I improve?

- More automation
- Better UI for controlling boards
- Create my own PCB for the Opto-Isolator Board
- Get a real case for the power distribution parts
- Better furniture for the whole farm

Thanks & Acknowledgements

- Renesas Electronics Corporation, for contracting me for Linux kernel work, and supplying me with development boards,
- ► The **Linux Foundation**, for organizing this conference and giving me the opportunity to present here,
- BayLibre, for creating ACME,
- The Renesas Linux Kernel Team, for insights and discussions,
- ► The Linux Kernel Community, for having so much fun working together towards a common goal.

Questions?

