
Matthew Locke and Eugeny Mints

April, 2007

A Parameter based approach
to Linux power management

NomadGS

Agenda

 History

 Background

 Features/Goals

 Parameter framework

 API

 Key Internals

 Use Cases

 Issues

NomadGS

History

 All started from Dynamic Power Management (DPM)
framework introduced in 2001 by Montavista and IBM

 Community rejected DPM and it wasn’t pushed much further
in the community

 In 2004, Todd Poynor (MV) submitted PowerOP which is the
operating point layer from DPM. Not much traction.

 In 2006, Eugeny and myself (NomadGS) attempt to get
PowerOP accepted by showing how it can be used on x86 as
well as embedded.

 Becomes clear that the operating point concept won’t work
for every platform and therefore the wrong base abstraction.

 End of 2006, back to the drawing board.

NomadGS

Operating Points

 Operating Points - set of
system wide parameters that
control power consumption.

 Parameters need to be set as
a group for optimal
power/performance balance or
hardware dependencies

 Parameter values were
platform specific - divider
values not frequencies.

 Operating framework
(PowerOP) maintained a list of
valid operating points.

 Did not address local device
driver power management.

NomadGS

Back to the Drawing Board
- Features and Goals

 Run time control of individual hardware resources that
affect power consumption
 Scale voltage and clocks; control power domains

 Track use count of hardware resources
 Trigger action when use count is zero.

 Notify resource consumers when output value changes.
 Subscribe for notification only when required.

 Follow existing clock framework behavior and API as
much as possible

 Modular - allow separate board and SoC definition of
parameters. Runtime registration of parameter.

 Keep system operational

NomadGS

Parameter Framework

 Parameter framework provides
individual control over power
parameters.

 Tracks use count

 Captures generic relationships
between h/w resources

 Provides notifications.

 Parameter Group allows s/w to
set parameters as a group for
optimal power/performance
balance.

 Also enables capturing
platform specific h/w
dependencies

NomadGS

Hardware resources

 Hardware resources are abstracted as a PM device

 PM device has input, output, and state.

 Export control over output and state

 State allows generic control over pm device when use
count is zero. We don’t have to special case output
values.

 State is platform and resource specific

Control output not
configuration of
the resource.

NomadGS

Track use count and keep system
operational

 Must keep track of relationships between
parameters

 Define 3 types of relationships:
 Domain is between different types - clk, voltage

 Parent-child is between the same type - pll, clk
dividers

 Functional requires “set” method to be coordinated in
some way

NomadGS

Example relationship tree

 V1, V2, V3 are voltage
domains on a SoC

 V0 is the voltage regulator
on the board. It may
supply the same voltage to
all the domains or supply
separate sources.

NomadGS

PM structures

 struct pm_device_ops - a pm provider driver methods
 init: initialize pm device
 set: set new output value
 round: round a given value to hardware supported value
 set_state: state that is used when ref count is zero
 recalc: determine new output value given parent value

 struct pm_device
 ops: pm provider driver methods
 parent/child: track parent and children
 master/slave: track domains
 consumers: subscribed to the pm provider.
 target_value: output value set when node is enabled
 state: power state set when use count is zero
 usecount: tracks if devices is in use or not

NomadGS

API

 pm_dev_get - get handle to a pm device

 pm_dev_put - release handle

 pm_dev_enable - tell pm device to become active and increase
use count.

 pm_dev_disable - decrease use count and set state

 pm_dev_set - set output of pm device

 pm_dev_get_value

 pm_dev_set_state - set the state that pm device should enter at
zero use count.

 pm_dev_get_state

NomadGS

Enable node activity

 Enable on a node triggers
framework to walk up the tree
and enables parents/masters.

 Starting from top set enabled
node to last value passed into
set method.

 Stop when reach top or an
enabled node.

NomadGS

Change node output activity

 Changing a node output
triggers framework to tell
children to recalc.

 Children either change
configuration to stay at
same output value or
configuration stays the
same and output value
changes.

 If a change occurs
notification is sent out to
consumers of the pm_dev.

NomadGS

Disable node activity

 Disable checks use count. If
zero call set_state.

 If state causes pm device to lose
power, notify consumers.

 Repeat for parents and masters.

NomadGS

PM stack

NomadGS

Use Cases

 Select lower power states when pm device use counts are
zero

 On PXA, voltage domains are controlled by the idle and
sleeps states. If voltage domain use counts are zero, a
lower idle or even sleep state can be selected in idle loop

 Selection logic (governor or equivliant) can change output of
a shared pm device.

 Framework ensures that all children of the device are
adjusted and consumers are notified

 Device drivers can control local pm devices (not shared)

 Parameter group can collect arbitrary pm devices into groups
and set the group using the parameter framework API.
(Platform independent)

NomadGS

Issues

 Separate frameworks for voltage and clocks?

 Typed interface

 Recently submitted voltage framework has different behavior

 Is there enough justification to track relationships between
clocks and voltages

 What we can do depends on the hardware.

 Current clock framework is interface only. Does it make
sense to move the code common among platforms to be
generic?

Matthew Locke – CTO

408-386-1482

