ARM Flattened Device Tree status report

Grant Likely
Secret Lab Technologies Ltd.

April 14, 2010 Embedded Linux Conference San Francisco

Overview

- Device Tree Overview
- Integration with the Linux device model
- rework
- ARM specific

Terminology

- OpenFirmware (OF) Device Tree (DT)
 - Device representation exported by Open Firmware
 - This presentation is **not** about Open Firmware
- Flattened Device Tree (FDT)
 - Firmware-independent device tree
- Device Tree Compiler (DTC)
 - Convert between .dts and .dtb
 - Device Tree Source (.dts)
 - Device Tree Blob (.dtb)
 - Tokenized form; used by kernel
- Binding
 - Documentation of how the DT describes hardware
- Too Many Acronyms (TMA)

FDT – 3 minute overview

- Data structure for describing hardware
- Passed to kernel at boot
- Alternative to hard-coded platform details

Device Tree Model

- Tree with nodes & properties
 - Nodes give structure
 - Properties add detail
 - Key-value pairs
- 'compatible' property
 - Each 'compatible' value associated with a 'binding'.
- 'phandles'
 - secondary connections between nodes
 - irqs, gpios, mdio, i2s, etc

FDT – Why?

- Multiplatform
- Variances
- Simplify board ports
- Firmware → Kernel data passing

FDT – Why not?

- Complexity (Does it buy me anything?)
- Learning curve
- More work?

Context

Image credit: http://xkcd.com/619/

FDT – What it is not?

- Doesn't replace board-specific code
 - Good for common-case
 - Special cases are still special
- Doesn't add features to your platform

FDT – Alternatives

- BIOS/ACPI/DSDT
- UEFI
- Open Firmware

– Why isn't u-boot/CFE/favorite firmware in this list?

Model – Firmware

- Firmware obtains .dtb and passes to kernel
- How? Options:
 - Load and pass verbatim
 - Load and modify
 - Generate from scratch
 - (Here there be Dragons!)

Model - Booting

- Device Tree passed in ATAG_DEVTREE
 - Physical address of .dtb (tentative)
 - May carry devtree as ATAG payload
- Early init
 - Determine memory
 - Determine machine
 - Boot to mm set up
 - Issue: access during early init?

Model – Booting

- Unflatten .dtb
 - Allocate space for unpacked form
 - Can now directly dereference tree
 - Same representation as for 'real' Open Firmware
- Boot to machine_init
- Register devices

Digression: Linux device model

- Busses
- Devices
- Drivers
- Hierarchy of Devices

Digression: Linux device model

DT & Linux device model – historical

SPARC

- Walk entire tree, register of_device for each node
- drivers may bind against any node
- Other bus registrations mirror of_device hierarchy (ie. PCI)
 - Duplicate 'struct device'

DT & Linux device model - historical

- PowerPC/Microblaze
 - Subset of tree registered as of_devices
 - Typically only mmio devices
 - Drivers may create child busses of different types
 - No device-tree integration with non-of_devices
 - OF wrappers for other busses

DT & Linux device model – new approach

- Conceptual flaws of of_platform_bus
 - Duplicate of platform bus
 - DT data applicable to more than just platform devices
 - platform_driver won't bind against an of_device

DT & Linux device model – new approach

- DT is support data
 - Make available to all devices
- Move probe data
 - *of_node → struct device
 - *of_match_table → struct device driver
- Generalize OF-style binding functions
 - Available to any bus type
- Eliminate of_platform_bus_type
 - Merge with platform_bus_type

Demo Time

Current State

- Intrastructure works
 - Register mapping
 - IRQ mapping
 - Platform bus integration
- Board support (minimal)
 - Versatile on QEMU
 - OMAP3
 - i.MX51
- Registering platform devices
- Binding against drivers

Next Steps

- Finish board support
- I2c, spi, and others
 - Need to add bus binding code
- Documentation
 - How to use it
 - Bindings

Resources

- Secret Lab git tree
 - git://git.secretlab.ca/git/linux-2.6
 - Branch: test-devicetree
 - Unified code, bindings
- Jeremy Kerr's tree
 - git://git.can
 - Early init support, boot wrapper
- Web sites
 - http://fdt.secretlab.ca
 - https://wiki.ubuntu.com/KernelTeam/ARMDeviceTrees

Acknowledgements

- CE Linux Forum
- IBM/Freescale/Canonical
- Too many people to mention

