
Android
without Java

Bernhard "Bero" Rosenkränzer, Linaro
bero@linaro.org

Android Builders Summit 2014

What's this all about?

When starting to write an Android app, the choice of
programming languages is clear -- mostly because

there's only one option: Java.

...

or are there options after all?

Why would anyone want to use
anything else?

Java is a good choice - it is portable
across different CPU architectures,
virtually all Android documentation
explains how to do things in Java,
Android APIs were designed with
Java concepts in mind, and Java code
tends to be readable...

BUT...

Pre-Existing code

Integration with pre-existing code may be
necessary/wanted:

• Use of a library not written for Java
intended

• Integration with older code may be
necessary (e.g. adding a new Android
based in-vehicle entertainment system
that has to coexist on the same SOC with
a pre-existing C/C++ navigation system

Portability

• Do you really need to rewrite that
App originally written for that other
mobile OS in Objective-C?

• Or the desktop application written
in C++ or C?

• Especially if that desktop
application will continue to be
developed and maintained?

Hardware access

You may be working on a new device with functionalities Android
developers never thought of -- and a new kernel (or access library)
interface to talk to it: One for which support has never been
implemented in Java libraries, and for which no HAL exists so far - so
some lower level language code is needed to interface with it.

Special-purpose languages

(Almost) everything can be done in a
general purpose language like Java or
C/C++ -- but sometimes a special
purpose language can be more efficient
at a particular task than a general
purpose language -- and hand-crafted
assembly (or low level C) code can be
more efficient than any code generated
by a VM.

Habits and personal
preferences

If you have a team of C++ programmers,
they'll want to use C++ for a new project
-- and be much more efficient with it
too.

So can it be done?
Yes. In multiple ways.

NDK

To do any of this, you will need an Android NDK -- either Google's
official NDK, available at https://developer.android.com/tools/sdk/ndk -
or Linaro's NDK, available at
http://releases.linaro.org/14.03/components/android/ndk (14.03 is the
current release right now - please check for newer releases when
trying to download it at a later point!).
There may be other customized versions of the NDK that will do the
trick as well.

Modifications in the Linaro NDK: We use Linaro toolchains (with many
additional optimizations for ARM architectures), and our gcc config
enables support for Objective-C and Objective-C++, to ease porting of
applications originally written for that other mobile OS that shall go
unnamed. Linaro NDK already contains toolchains based on gcc 4.9.

JNI

JNI (Java Native Interface) is fully supported on
Android. It allows calling code with C calling
conventions from an application otherwise
developed in Java.

JNI in itself is the solution to some of our
problems (e.g. using a pre-existing backend
library with an otherwise new app)...

It is also at the core of some other solutions (even
if they hide it), and there may be a need to call a
Java-only API in anything - so let's take a closer
look.

JNI: On the Java side
package org.linaro.jnitest;
import android.app.Activity;
import android.widget.TextView;
import android.os.Bundle;
public class JNITest extends Activity {

static {
System.loadLibrary("JNITest");

}
@Override public void onCreate(Bundle s) {

super.onCreate(s);
TextView tv = new TextView(this);
tv.setText(ValueFromCCode());
setContentView(tv);

}
public native String ValueFromCCode();

}

JNI - Explanation of Java side

static {
System.loadLibrary("JNITest");

}
The static block is run once on application startup.
System.loadLibrary loads a JNI library (which is a regular shared
library (*.so) exporting functions that follow JNI naming conventions)
into the application, and connects functions exported by the library to
Java functions marked "native".

public native String ValueFromCCode();

This is a declaration for a function we'll implement in C -- the "native"
keyword tells the VM to look for the implementation in libraries loaded
with System.loadLibrary.

Note that functions are resolved only when called. You don't get a
compile time or startup time error if you forgot to write an
implementation. (Instead, calling the function will throw an
UnsatisfiedLinkError).

JNI - C side

#include <string.h>
#include <jni.h>
#ifdef __cplusplus
extern "C" {

jstring
java_org_linaro_jnitest_JNITest_ValueFromCCode(JNIEnv
*env, jobject o);
}
#endif
jstring
Java_org_linaro_jnitest_JNITest_ValueFromCCode(JNIEnv
*env, jobject o) {

return (*env)->NewStringUTF(env, "This is the
result of a very highly optimized C function");
}

JNI - Explanation of C side

The #ifdef __cplusplus/extern "C" block makes sure we get C
style calling conventions for the JNI functions. JNI doesn't know about
C++ calling conventions.
If you're using plain C, you can ignore this part.

jstring
Java_org_linaro_jnitest_JNITest_ValueFromCCode(JNIEnv
*env, jobject o) {

Various interesting bits in that line:
jstring: this return type is a C interface to a Java String
the function name:
Java_ org_linaro_jnitest_ JNITest_ ValueFromCCode

From
Java:

package org.linaro.jnitest;
public class JNITest ... {
public native String ValueFromCCode();

JNI - Explanation of C code

jstring
Java_org_linaro_jnitest_JNITest_ValueFromCCode(JNIEnv
*env, jobject o) {

JNIEnv *env - we get a pointer to the JNI environment that
will do some work for us (such as converting between C types and
standard Java types)

jobject o - we get a pointer to the object we're part of (o
points to "this" -- we don't name it that to avoid conflicts with C++
keywords).

JNI - Explanation of C code

return (*env)->NewStringUTF(env, "This is the result of
a very highly optimized C function");

This sends our return value -- NewStringUTF, passed to us as
part of the JNI Environment, converts a C string to a Java String.
In C++, could also use the slightly less ugly

return env->NewStringUTF("This is the result of a very
highly optimized C function");

In general, for every C callback provided as part of JNIEnv, there's a
C++ method by the same name that differs only in not having to add
the environment as a first argument.
For the rest of this presentation, we'll use the C style calls without
pointing out the C++ method (unless it makes a difference).

JNI - Types

Aside from jstring, corresponding to a Java String, you can pass:
Java C Java C Java C

byte jbyte java.lang.Object jobject array of longs jlongArray

short jshort java.lang.Class jclass array of floats jfloatArray

int jint java.lang.String jstring array of doubles jdoubleArray

long jlong java.lang.Throw
able

jthrowable array of chars jcharArray

float jfloat array jarray array of
booleans

jbooleanArray

double jdouble array of ints jintArray array of objects jobjectArray

char jchar array of bytes jbyteArray indices and
sizes

jsize

boolean jboolean array of shorts jshortArray weak reference jweak

Always use the correct type -- a jint will likely be the same as an int on
your current target platform, but it may not remain the same with a
new CPU architecture.

JNI - Type conversion

For integer types, you can use regular C/C++ style casts in JNI code. But
Java Strings are rather different from C char* arrays or C++ std::strings.

JNIEnv provides what the functions needed to convert between the
two:
jstring javaString;
const char *cString = (*env)->GetStringUTFChars(env,
javaString, NULL);
std::string cppString = env-
>GetStringUTFChars(javaString, NULL);

Copies the contents of the Java String javaString into the C string
cString or the C++ string cppString (internally, this goes through C
string conversion, JNI doesn't integrate with the STL directly -- the C
function does the same).
(*env)->ReleaseStringUTF8Chars(env, javaString,
cString);

Tells the VM that we no longer need access to the UTF8 characters (so
the string can be garbage collected etc.)

JNI - UTF-8 String conversion

jsize s=(*env)->GetStringUTFLength(env, javaString);
Gets the length of the string in UTF-8 representation in bytes.

(*env)->GetStringUTFRegion(env, javaString, start,
length, buf);

Extracts a range of a Java String into the C string buf -- start and length
are given as a jsize.

jstring s=(*env)->NewStringUTF(env, bytes);
Generates a new Java String from the C string in bytes (as seen in the
example)

JNI - UTF-16 String conversion

const jchar *s = (*env)->GetStringChars(env, string,
isCopy);

Gets the contents of the Java string referred to by string into s as an
array of UTF-16 characters. isCopy is a pointer to a jboolean (may be
NULL) that will take a value indicating whether s contains a copy of the
string (true) or a pointer to the actual data in the string that can be
modified (false).

(*env)->ReleaseStringChars(env, s, chars);
Tells the VM that the native code no longer needs the UTF-16
characters in chars for Java String s. (Same as ReleaseStringUTFChars
except UTF-16)

(*env)->GetStringLength(env, string);
Returns (as a jsize) the length (number of UTF-16 characters) of the
Java String string

JNI - UTF-16 String conversion

(*env)->GetStringRegion(env, str, start, length, buf);
Copies length UTF-16 characters beginning at offset start from the Java
String str into the C jchar array buf. (Similar to GetStringUTFRegion).

jchar *utfChars;
jsize length = size;
jstring s=(*env)->NewString(env, utfChars, length);

Creates a new Java String from the UTF-16 character array pointed to
by utfChars, with length length.

JNI - UTF-16 String conversion

const jchar *cString = (*env)->GetStringCritical(env,
string, isCopy);

This is essentially the same as GetStringChars - except you're more
likely to get a reference to the data instead of a copy, and you have to
be more careful: Between GetStringCritical and ReleaseStringCritical,
you cannot cause the thread to block or issue JNI calls.

(*env)->ReleaseStringCritical(env, s, cString);
The counterpart of GetStringCritical - releases the UTF-16 character
array.

JNI - Array conversion

There are identical array conversion functions for all Java primitive
types (int, byte, short, long, float, double, char, boolean) - we'll
cover int here to demonstrate - all the other types work the same.
The array conversion functions are similar to the String handling
functions we've looked at before:

jint *intArray = (*env)->GetIntArrayElements(env,
array, isCopy);

Returns a C style array of jints with the contents of Java int array
(passed as type "jintArray" to the JNI function), with isCopy receiving
a jboolean indicating whether the C array is a copy or a direct pointer
to the data.

(*env)->ReleaseIntArrayElements(env, array, intArray,
mode);

Tells the VM we no longer need the C array intArray referring to the
Java array array. mode is relevant only if the C array is a copy of the
Java array, in which case it can take the following values:

0 copy back the content and free the intArray buffer

JNI_COMMIT copy back the content, but do not free the buffer

JNI_ABORT free the buffer, but don't copy back any changes made.

By default, any code should use 0 because this makes sure the behavior
is the same regardless of whether the array was copied or pinned in
the first place (something over which the JNI programmer has no
control) - the other values can be used for performance tweaking.

JNI - Array conversion 2

JNI - Array conversion 3

(*env)->GetIntArrayRegion(env, array, start, length,
buf);

Copies length elements of the Java int array array, starting at offset
start, into the C int array buf.

(*env)->SetIntArrayRegion(env, array, start, length,
buf);

Copies length elements of the C int array buf, starting at offset start,
into the Java int array array.

jintArray array = (*env)->NewIntArray(env, length);
Creates a new Java int array

JNI - Array conversion 4

void *cArray = (*env)->GetPrimitiveArrayCritical(env,
array, isCopy);

This is essentially the same as GetIntArrayElements - except you're
more likely to get a reference to the data instead of a copy, and you
have to be more careful: Between GetPrimitiveArrayCritical and
ReleasePrimitiveArrayCritical, you cannot cause the thread to
block or issue JNI calls.

(*env)->ReleasePrimitiveArrayCritical(env, array,
cArray, mode);

The counterpart of GetPrimitiveArrayCritical - releases the array.

It is noteworthy that, unlike GetIntArrayElements, this call is
identical for all the primitive types (There's no GetIntArrayCritical
or GetFloatArrayCritical) -- instead, you get a void pointer and
have to cast to the correct type.

JNI - Example 2 - Java

// package and import statements omitted for brevity
public class JNITest extends Activity {

static { System.loadLibrary("JNITest"); }
public native void addOne(int[] numbers);
@Override public void onCreate(Bundle s) {

super.onCreate(s);
int[] numbers = { 1, 2, 3, 5, 7, 11, 13 };
addOne(numbers);
StringBuffer sb;
for(int i: numbers)

sb.append(Integer.toString(i) + " - 1
is a prime.\n");

TextView tv = new TextView(this);
tv.setText(sb.toString());
setContentView(tv);

}
}

JNI - Example 2 - C

// #include statements etc. omitted for brevity
void Java_org_linaro_jnitest_JNITest_addOne(JNIEnv
*env, jobject o, jintArray jArray) {

jint *cArray = (*env)->GetIntArrayElements(env,
jArray, NULL);

if(!cArray)
return NULL;

for(int i=0; i<(*env)->GetArrayLength(env,
jArray))

cArray[i]++;
(*env)->ReleaseIntArrayElements(env, jArray,

cArray, 0);
}

JNI - Accessing Java variables

JNI code can access the class it is part of just like equivalent Java code
could - but because of missing interoperability, it's not as easy as
referencing the member variable by its name or as fast as accessing a
C/C++ variable.
You have to go through access functions provided through the JNIEnv
pointer:
jclass thisClass = (*env)->GetObjectClass(env, object);

Obtains a reference to the object's class to work with (env and object
are both passed by JNI - they're the first 2 arguments to the function
being called).
jfieldID field = (*env)->GetFieldID(env, thisClass,
"variableName", "fieldDescriptor");

Obtains the "field ID" of a member variable - this is a unique identifier
that can be passed to accessor functions to reference the class member.
Looking up a field ID is a relatively slow operation. You may want to
cache the result.

JNI - Accessing Java variables

jfieldID field = (*env)->GetFieldID(env, thisClass,
"variableName", "fieldDescriptor");

The field descriptor ("filedDescriptor") is the class member's signature
(or type) - for a variable, this is a description of its type:

type signature type signature

byte B float F

short S double D

int I (capital i) char C

long J boolean Z
For an object (anything that is not a primitive - even a String), the
signature is the letter L, followed by the fully qualified name with dots
replaced by slashes, followed by a semicolon - e.g.
"Ljava/lang/String;" for a Java String.
For array types, prefix a "[" -- e.g. "[I" for an array of ints, or
"[Lorg/linaro/test;" for an array of org.linaro.test objects.

JNI - Accessing Java variables

jint i = (*env)->GetIntField(env, obj, fieldID);
Returns the contents of the class member variable identified by fieldID.
As with the array types, this function is available for all primitive types
without modification -- GetIntField, GetByteField, GetShortField, ... and
GetObjectField for object types.

(*env)->SetIntField(env, obj, fieldID, value);
Sets the contents of the class member variable identified by fieldID to
value - again, this is available for all primitive types and objects
(SetByteField, SetDoubleField, ..., SetObjectField)

JNI - static member variables

Trying to use GetFieldID and friends on a variable declared "static"
will result in a nasty surprise - it won't be found.
Static member variables have to be accessed through similar functions:
(*env)->GetStaticFieldID(env, thisClass, "name",
"fieldDescriptor");

is the same as GetFieldID, except it works on static members.

Similarily, to access those members, Get<Type>Field and
Set<Type>Field change to GetStatic<Type>Field and
SetStatic<Type>Field.

An example says more than 10
slides... - Java side

// imports etc. omitted for brevity
public class JNITest extends Activity {

static {
System.loadLibrary("JNITest");

}
private int i = 42;
public String s = "Written in Java";
public static double sd = 3.14;
protected static String ss = "JNI - Java";

public native String modifyVariables();

Example - Java
@Override public void onCreate(Bundle b) {

super.onCreate(b);
TextView tv = new TextView(this);
String s = modifyVariables();
s += "After calling C code, variables are:

\n",
s += "i = " + Integer.toString(i) + "\n";
s += "s = " + s + "\n";
s += "sd = " + sd + "\n";
s += "ss = " + ss + "\n";
tv.setText(s);
setContentView(tv);

}
}

Example - C

// #includes etc. omitted for brevity
jstring
Java_org_linaro_jnitest_JNITest_modifyVariables(JNIEnv
*env, jobject *o) {

jclass thisClass = (*env)->GetObjectClass(env,
o);

jfieldID id_i = (*env)->GetFieldID(env,
thisClass, "i", "I");

jfieldID id_s = (*env)->GetFieldID(env,
thisClass, "s", "Ljava/lang/String;");

jfieldID id_sd = (*env)->GetStaticFieldID(env,
thisClass, "sd", "D");

jfieldID id_ss = (*env)->GetStaticFieldID(env,
thisClass, "ss", "Ljava/lang/String;");

Example - C

jint c_i = (*env)->GetIntField(env, thisClass, id_i);
jstring c_s = (jstring)(*env)->GetObjectField(env,
thisClass, id_s);
jdouble c_sd = (*env)->GetStaticDoubleField(env,
thisClass, id_sd);
jstring c_ss = (jstring)(*env)-
>GetStaticObjectField(env, thisClass, id_ss);
char *cs_s = (*env)->GetStringUTFChars(env, c_s, NULL);
char *cs_sd = (*env)->GetStringUTFChars(env, c_sd,
NULL);
char buf[512];
snprintf(buf, 512, "Variables initially seen by C code:
\ni=%u\ns=%s\nsd=%f\nss=%s\n\n", c_i, cs_s, c_sd,
cs_ss);

Example - C

(*env)->ReleaseStringUTFChars(env, c_s, cs_s);
(*env)->ReleaseStringUTFChars(env, c_ss, cs_ss);
(*env)->SetIntField(env, thisClass, id_i, 1701);
(*env)->SetObjectField(env, thisClass, id_s,

(*env)->NewStringUTF(env, "Written in C"));
(*env)->SetStaticDoubleField(env, thisClass,

id_sd, 3.1415926);
(*env)->SetStaticObjectField(env, thisClass,

id_ss, (*env)->NewStringUTF(env, "JNI - C"));
return (*env)->NewStringUTF(env, buf);

}

JNI - Calling Java from C

Another useful feature of JNI is calling Java methods from C - in the
Android-without-Java world, this is among the most useful bits, as it
allows access to frameworks that provide only Java interfaces.

Accessing methods is very similar to accessing variables:

jmethodID mid = (*env)->GetMethodID(env, thisClass,
"name", "signature");

and

jmethodID mid = (*env)->GetStaticMethodID(env,
thisClass, "name", "signature");

get a method ID (just like the field ID for variables)

JNI - Method signatures

Signatures are similar to a variable's signature (field descriptor) as
well:
Argument types that need to be passed to the method, enclosed in
(parentheses) go first, followed by the return type.
Type encoding is the same as in field descriptors - with an added "V"
encoding, indicating a method returning void -- e.g.

method signature

void something() ()V

String x(int[] i) ([I)Ljava/lang/String;

org.linaro.TestType[]
x(double[] a, String s)

([DLjava/lang/String;)
[Lorg/linaro/TestType;

void x(int a, int b,
double c)

(IID)V

JNI - Calling Java from C

Once you have the method ID, you can invoke the method - the syntax
is once again similar to getting the contents of a variable:
(*env)->Call<returntype>Method(env, obj, methodId,
arg1, ...);

where <returntype> is the type of the method's return value. It can be
one of the primitive types (boolean, byte, char, short, int, long, double,
float), object, or void.
Or, for static methods,
(*env)->CallStatic<returntype>Method(env, obj,
methodId, arg1, ...);

For overridden methods, it is also possible to call the superclass'
method rather than the overridden one:
(*env)->CallNonvirtual<returntype>Method(env, obj,
methodId, arg1, ...);

JNI - Calling Java from C

There are two alternative ways to call a Java method from C code,
differing in how arguments are passed:
(*env)->Call<returntype>MethodV(env, obj, methodID,
varargs);
(*env)->Call<returntype>MethodA(env, obj, methodID,
jvalues);

These functions differ only in how parameters are passed - instead of
being passed through "...", Call*MethodV takes a va_list of the
arguments, Call*MethodA takes an array of jvalues.

JNI - jvalue

jvalue is a union type supporting all primitives and objects - the
naming of union members is similar to the types' signature, but in
lower case:

typedef union jvalue {
jboolean z;
jbyte b;
jchar c;
jshort s;
jint i;
jlong j;
jfloat f;
jdouble d;
jobject l;

} jvalue;

Overloading functions

JNI can also provide overloaded functions.
Since C has no concept of overloading, we have to modify the function
name. This is done by appending two underscores followed by the
function signature. A few modifications to the function signature are
necessary to make sure we don't create C syntax errors and create
something the JVM can parse:

• A literal _ is replaced with _1
• A ; is replaced with _2
• A [is replaced with _3
• Any non-ASCII character is replaced with _0XXXX, where XXXX

is the Unicode character code (hexadecimal using lower case a-f)

Since the return type isn't used in overloading, it (and the parentheses
enclosing the parameters) is omitted from the signature.

Exercise: Overloading methods

Try figuring out the correct C function name for the overloaded Java
declarations (in package org.linaro.jni, class JNI):

int x(int a);

String x(float a);

void x(int a, double
b);

char x(int[] a);

String x(int a,
String[] b);

String x(Test_Class
a);

Exercise: Overloading methods

Try figuring out the correct C function name for the overloaded Java
declarations (in package org.linaro.jni, class JNI):

int x(int a); Java_org_linaro_jni_JNI_x__I

String x(float a);

void x(int a, double
b);

char x(int[] a);

String x(int a,
String[] b);

String x(Test_Class
a);

Exercise: Overloading methods

Try figuring out the correct C function name for the overloaded Java
declarations (in package org.linaro.jni, class JNI):

int x(int a); Java_org_linaro_jni_JNI_x__I

String x(float a); Java_org_linaro_jni_JNI_x__F

void x(int a, double
b);

char x(int[] a);

String x(int a,
String[] b);

String x(TestClass
a);

Exercise: Overloading methods

Try figuring out the correct C function name for the overloaded Java
declarations (in package org.linaro.jni, class JNI):

int x(int a); Java_org_linaro_jni_JNI_x__I

String x(float a); Java_org_linaro_jni_JNI_x__F

void x(int a, double
b);

Java_org_linaro_jni_JNI_x__ID

char x(int[] a);

String x(int a,
String[] b);

String x(Test_Class
a);

Exercise: Overloading methods

Try figuring out the correct C function name for the overloaded Java
declarations (in package org.linaro.jni, class JNI):

int x(int a); Java_org_linaro_jni_JNI_x__I

String x(float a); Java_org_linaro_jni_JNI_x__F

void x(int a, double
b);

Java_org_linaro_jni_JNI_x__ID

char x(int[] a); Java_org_linaro_jni_JNI_x___3I

String x(int a,
String[] b);

String x(Test_Class
a);

Exercise: Overloading methods

Try figuring out the correct C function name for the overloaded Java
declarations (in package org.linaro.jni, class JNI):

int x(int a); Java_org_linaro_jni_JNI_x__I

String x(float a); Java_org_linaro_jni_JNI_x__F

void x(int a, double
b);

Java_org_linaro_jni_JNI_x__ID

char x(int[] a); Java_org_linaro_jni_JNI_x___3I

String x(int a,
String[] b);

Java_org_linaro_jni_JNI_x__I_3L
java_lang_String_2

String x(Test_Class
a);

Exercise: Overloading methods

Try figuring out the correct C function name for the overloaded Java
declarations (in package org.linaro.jni, class JNI):

int x(int a); Java_org_linaro_jni_JNI_x__I

String x(float a); Java_org_linaro_jni_JNI_x__F

void x(int a, double
b);

Java_org_linaro_jni_JNI_x__ID

char x(int[] a); Java_org_linaro_jni_JNI_x___3I

String x(int a,
String[] b);

Java_org_linaro_jni_JNI_x__I_3L
java_lang_String_2

String x(Test_Class
a);

Java_org_linaro_jni_JNI_x__Lorg
_linaro_jni_Test_1Class_2

JNI - Creating objects

It may be necessary to create a Java object from C (or C++, Objective-C,
...) code - JNI allows for this this too:

First, we need to get a reference to the class:
jclass cls = (*env)->FindClass(env, "class/name");

Here, class/name is the fully qualified class name, with dots replaced
with slashes - e.g. if we want a reference to the java.lang.Integer,
we'd pass "java/lang/Integer".

Next, to create an object we'll have to call its constructor (there may be
several constructors, so we have to find it through its signature). A
constructor is essentially just another method, so we use GetMethodID
to get the constructor we're looking for. As far as GetMethodID is
concerned, the constructor is a method called "<init>".
Since constructors by definition don't have a return value ("new XYZ()"
in Java returns the object, not anything decided on by the constructor),
its signature is that of a method returning void.

JNI - Creating objects

jmethodID ctor = (*env)->GetMethodID(env, cls,
"<init>", "(I)V");

Calling the constructor we've found is similar to calling any other
method - but because of the different return type (as with "new", we'll
want the class, not any return value), we have to use NewObject (or
NewObjectV, NewObjectA) to call the constructor.

jobject obj = (*env)->NewObject(env, cls, ctor, ...);

where ... is the arguments being passed to the constructor.
It is also possible to create an object bypassing its constructor - but this
should usually be avoided (lots of room for error there):

jobject obj = (*env)->AllocObject(env, cls);

JNI - Creating arrays of objects

The last commonly used type of thing we may want to create from
native code is an array of objects. In many ways, this is similar to
creating an object.

As before, we'll have to use FindClass to get a class reference, and
GetMethodID to find the constructor we'd like to call.

Then, we'll have to look at 3 new functions:
jobjectArray oa=(*env)->NewObjectArray(env, size, cls,
initialElement);
(*env)->setObjectArrayElement(env, oa, index, value);
jobject o = (*env)->getObjectArrayElement(env, oa,
index);

NewObjectArray creates the array and initializes all members to
initialElement (passed as a jobject - typically NULL).

JNI - Creating arrays of objects

(*env)->setObjectArrayElement(env, oa, index, value);

Sets an object inside the array - typically, you'll want value to be the
result of a NewObject call, or an object received as input parameter.

jobject o = (*env)->setObjectArrayElement(env, oa,
index);

Retrieves an object from an object array (unlike the handlers for arrays
of primitives, there's no GetObjectArrayElements or
GetObjectArrayRegion).

JNI - References

Now we've done everything that is typically needed for
interoperability between Java code and native code -- JNI can do a few
more things that allow us to write more efficient and safer code
though.

An important thing is handling references - FindClass and friends are
expensive operations, so we may want to cache their results. But just
caching them in e.g. a global variable in C code would not work
because they return a local reference - invalidated once our method
exits.

jobject something = (*env)->NewGlobalRef(env,
localObject);

creates a global reference to localObject that can be cached and will be
available until freed with

(*env)->DeleteGlobalRef(env, something);

JNI - References

JNI also provides a function to delete a local reference (this is done
automatically when leaving native code - but you may want to allow a
large object to be deleted before allocating lots of additional memory):

(*env)->DeleteLocalRef(env, obj);

There's also

jobject obj = (*env)->NewLocalRef(env, ob);

for creating a new local reference from an existing local or global
reference. This is useful only in a few special cases (e.g. to make sure a
return value is always a local reference that can DeleteLocalRef-ed by
other parts of the code).

JNI - local reference lifetime

There are 3 functions to help controlling the lifetime of local
references:
jint n = (*env)->EnsureLocalCapacity(env, count);

Tries to make sure there is space for at least count local references (by
default, JNI allocates 16 local references upon entry).
Returns 0 on success or a negative number (and an
OutOfMemoryError exception).

jint n = (*env)->PushLocalFrame(env, capacity);
Creates a new local reference frame in which at least capacity local
references can be allocated. Local references from the surrounding
frame remain valid. The return value is the same as that of
EnsureLocalCapacity. Any local frame created must be closed with:

jobject o = (*env)->PopLocalFrame(env, obj);
Pops off the current reference frame, freeing all local references. If
obj is non-NULL, returns a reference to obj that remains valid in the
new local reference (useful to e.g. keep a result).

JNI - Weak Global References

There is a third type of reference - a so-called weak global reference,
generated by

jweak w = (*env)->NewWeakGlobalRef(env, obj);

and deleted by

(*env)->DeleteWeakGlobalRef(env, obj);

Like a global reference, a weak global reference is not freed once we
return from native code. Unlike a global reference, the garbage
collector is free to delete it. C code can check if it has been deleted by
using

(*env)->IsSameObject(env, w, NULL);

to compare the reference to the null object.

JNI - Weak Global References

Caching code could look like this:

static jclass cls = NULL;

void Java_org_linaro_jnitest_JNITest_doSomething(JNIEnv
*env, jobject obj) {

if(!cls || (*env)->IsSameObject(cls, NULL)) {
jclass c =

(*env)->FindClass("org/linaro/Test");
cls = (*env)->NewWeakGlobalRef(c);

}
// Do something fun with org.linaro.Test

}

JNI - References

Lastly, we can check what type of reference to something we have:

jobjectRefType rt = (*env)->GetObjectRefType(env, o);

rt can take the values JNIInvalidRefType, JNILocalRefType,
JNIGlobalRefType and JNIWeakGlobalRefType.

(This is useful e.g. when determining whether we have to use
DeleteLocalRef, DeleteGlobalRef or DeleteWeakGlobalRef to
make sure the reference can be freed).

JNI - Exceptions

Java relies on exceptions for error handling a lot more than C++, even
though the 2 languages' concepts of exceptions are rather similar.

Dealing with exceptions is important if we're interoperating with Java
bits - even while we're on the native side.
JNI provides a few functions to handle exceptions:

jthrowable ex = (*env)->ExceptionOccurred(env);

Checks if an exception occurred. If all is fine, ex will be NULL -
otherwise, it contains a reference to the exception: a jobject inheriting
java.lang.Throwable. You can use Call*Method etc. on it to find out
details.

(*env)->ExceptionClear();

clears the exception (essentially, this tells the JVM that we dealt with it)
and allows the application to go on.

JNI - Exceptions

In addition to catching exceptions thrown by Java code, we can throw
our own exceptions back.

(*env)->Throw(env, ex);

Throws the exception ex, where ex is a completely constructed Java
object inheriting java.lang.Throwable.
The easiest use of this is to just pass an exception we got from a Java
method call back to Java code invoking us:

jobject ex = (*env)->ExceptionOccurred(env);
if(ex)

(*env)->Throw(env, ex);

JNI - Exceptions

We can also create and throw our own exceptions, using

(*env)->ThrowNew(env, cls, "Description");

where cls is a jclass reference typically obtained through FindClass.
A typical use would be

jclass exc = (*env)->FindClass(env,
"java/lang/IllegalArgumentException");
(*env)->ThrowNew(env, exc, "Thrown by native code");

JNI - Threads

The last important functionality provided through JNI is thread
synchronization -- synchronizing on an object -- equivalent to starting
and finishing a

synchronized(obj) {
// do something

}
block in Java code -- is done through:

(*env)->MonitorEnter(env, obj);
// do something
(*env)->MonitorExit(env, obj);

Beyond JNI

With all we know about JNI now, it is possible to write large parts of
our code in C, C++, Objective-C, Objective-C++ or any other language
that supports the creation of shared libraries with C style function
names -- but we still need to write some Java code to make use of our
functions.

There are ways to move even more functionality to native code.

Native Activity

The NDK includes a header file (platforms/android-*/arch-
*/usr/include/android/native_activity.h) that defines structures and
functions needed to implement an Activity at the lowest level without
writing any Java code. (The Activity contains a global JNIEnv pointer,
so we can call Java-only APIs through the JNI functions covered earlier
if necessary.)

Outside of the comments in the header file, there is very little
documentation on how to make use of this (and there are usually
better options).

The main entry point (equivalent of a regular C main() function) is
ANativeActivity_onCreate (name can be changed through the
android.app.func_name setting in the manifest), defined with the
following prototype:

void ANativeActivity_onCreate(ANativeActivity*
activity, void* savedState, size_t savedStateSize);

Native Activity

void ANativeActivity_onCreate(ANativeActivity*
activity, void* savedState, size_t savedStateSize);

activity is a pointer to the main native activity object - some members
of this struct are pre-filled (so we have access to a JNI environment
etc.), others have to be filled by us before doing anything else.

Various callbacks inside the activity should be initialized to functions
we're implementing - they're all members of the
ANativeActivityCallbacks struct accessible through activity-
>callbacks, so we set our callbacks with

activity->callbacks->X = ourImplementationOfX;

Native Activity - Callbacks

void onStart(ANativeActivity *activity);

Is called when the activity has started.

void onPause(ANativeActivity *activity);

Is called when the activity has paused.

void onResume(ANativeActivity *activity);

Is called when the activity has resumed from a pause.

Native Activity - Callbacks

void *onSaveInstanceState(ANativeActivity *activity,
size_t *outSize);

Is called when we should save our current state. We should return a
pointer allocated with malloc() [it will automatically be freed by the
framework], and set outSize to the number of bytes in the buffer
returned.
The state may be saved to disk - so it should not contain anything that
will not persist across restarts or reboots, such as pointers or file
descriptors.
This data is passed to ANativeActivity_onCreate on the next startup.

void onStop(ANativeActivity *activity);

Is called when the activity has stopped.

Native Activity - Callbacks

void onDestroy(ANativeActivity *activity);

Is called when the Activity is being destroyed.

void onWindowFocusChanged(ANativeActivity *activity,
int hasFocus);

Is called when our window has lost or received focus (used e.g. by
games to pause a game when an incoming phone call is interrupting).

void onNativeWindowCreated(ANativeActivity *activity,
ANativeWindow *window);

Is called when the window for the activity has been created. The
information in the "window" struct must be used to draw inside the
window.

Native Activity - Callbacks

void onNativeWindowResized(ANativeActivity *activity,
ANativeWindow *window);

Is called when the window for the activity has been resized (or
rotated). The application needs to make sure its rendering matches the
new size.

void onNativeWindowRedrawNeeded(ANativeActivity
*activity, ANativeWindow *window);

Is called when the window needs to be redrawn. In order to avoid
transition artifacts, the function should not return until drawing the
window in its current state is finished.

Native Activity - Callbacks

void *onNativeWindowDestroyed(ANativeActivity
*activity, ANativeWindow *window);

Is called when the window for the activity is going to be destroyed.
The function must not return before it has made sure nothing
(including other threads) will use the window in any way.

void *onInputQueueCreated(ANativeActivity *activity,
AInputQueue *queue);

Is called when the activity's input queue has been created. The input
queue can be used to start retrieving input events.

Native Activity - Callbacks

void *onInputQueueDestroyed(ANativeActivity *activity,
AInputQueue *input);

Is called when the input queue for the activity is going to be destroyed.
The function must not return before it has made sure nothing
(including other threads) will use the input queue in any way.

void *onContentRectChanged(ANativeActivity *activity,
const ARect *rect);

Is called when the rectangle in the window in which content should be
placed has changed (e.g. menu buttons or input window taking away
space)

Native Activity - Callbacks

void *onConfigurationChanged(ANativeActivity
*activity);

Is called when the device configuration has changed. New
configuration should be retrieved from assetManager.

void *onLowMemory(ANativeActivity *activity);

Is called when the system is running low on memory - a well-behaved
app should release unneeded resources (clear in-memory caches etc.)
so the system doesn't have to start killing processes to save memory.

Native Activity - functions

Outside of defining the callback structure, native_activity.h defines a
few functions we can call:

void ANativeActivity_showSoftInput(ANativeActivity
*activity, uint32_t flags);
void ANativeActivity_hideSoftInput(ANativeActivity
*activity, uint32_t flags);

Shows/hides the virtual keyboard. flags can be:
ANATIVEACTIVITY_SHOW_SOFT_INPUT_IMPLICIT
ANATIVEACTIVITY_SHOW_SOFT_INPUT_FORCED
ANATIVEACTIVITY_HIDE_SOFT_INPUT_IMPLICIT_ONLY
ANATIVEACTIVITY_HIDE_SOFT_INPUT_NOT_ALWAYS

implicit means the action was not manually requested by the user.
Forced means it was manually requested.
NOT_ALWAYS means the keyboard remains open if it was FORCED
initially.

Native Activity - functions

void ANativeActivity_setWindowFormat(ANativeActivity
*activity, int32_t format);

Sets the pixel format of the window. There doesn't seem to be a header
defining readable constants - but looking at Java code, we can see:

A_8 8 RGBX_8888 2

LA_88 10 RGB_332 11

L_8 9 RGB_565 4

OPAQUE -1 RGB_888 3

RGBA_4444 7 TRANSLUCENT -3

RGBA_5551 6 TRANSPARENT -2

RGBA_8888 1 UNKNOWN 0

Native Activity - functions

void ANativeActivity_setWindowFlags(ANativeActivity
*activity, uint32_t addFlags, uint32_t removeFlags);

Changes the window flags of the our activity. Available flags:
AWINDOW_FLAG_ALLOW_LOCK_WHILE_SCREEN_ON, _DIM_BEHIND,
_BLUR_BEHIND, _NOT_TOUCHABLE, _NOT_TOUCH_MODAL,
_TOUCHABLE_WHEN_WAKING, _KEEP_SCREEN_ON,
_LAYOUT_IN_SCREEN, _LAYOUT_NO_LIMITS, _FULLSCREEN,
_FORCE_NOT_FULLSCREEN, _DITHER, _SECURE, _SCALED,
_IGNORE_CHEEK_PRESSES, _LAYOUT_INSET_DECOR,
_ALT_FOCUSABLE_IM, _WATCH_OUTSIDE_TOUCH,
_SHOW_WHEN_LOCKED, _SHOW_WALLPAPER, _TURN_SCREEN_ON,
_DISMISS_KEYGUARD

Native Activity - functions

void ANativeActivity_finish(ANativeActivity* activity);

Finish (stop and destroy) the activity.

Native Activity - possible pitfall

When using Native Activity directly, callbacks are handled on the
application's main thread - if they block, you can get "Application Not
Responding" type errors because the main thread will be
unresoponsive until the callback has returned.

Android Native App Glue

Android Native App Glue is a small static library that is included in the
NDK. It wraps the Native Activity system just discussed in an easier to
use way by providing implementations of all the callbacks that send an
event to the application's event loop in a separate thread - effectively
eliminating the possibility of a callback blocking the main thread
causing Application Not Responding errors.

Like Native Activity, Android Native App Glue does not come with a lot
of documentation beyond what's in its header file
(sources/android/native_app_glue/android_native_app_glue.h
in the NDK tree), but unlike Native Activity, it comes with example code,
located in the samples/native-activity directory in the NDK tree.

Let's take a look.

Android Native App Glue

The main entry point for applications using Android Native App Glue
is a function called android_main, with this prototype:

void android_main(struct android_app* state);

The parameter is an "android_app" structure containing references to
other important objects, such as the ANativeActivity object we'd get
from using Native Activity directly and an ALooper instance
(essentially a main loop) that listens to lifecycle and input events.

The ALooper instance can be used to listen for changes in additional
file descriptors as well.

android_app

Let's check what's inside the android_app structure android_main
receives:

void *userData;

This is a pointer to any data our app may want to pass around. The
Android stack only passes it without doing anything to it - it should
typically be used for a global state tracker etc.

void (*onAppCmd)(struct android_app *app, int32_t cmd);

A callback we can implement to receive application life cycle events.
Parameters are the android_app pointer, and the command being run.
At this time (Android 4.4 - KitKat, NDK r9d), this is one of:

APP_CMD_* events

APP_CMD_INPUT_CHANGED The input queue has changed.
android_app->inputQueue has
the new queue (may be NULL)

APP_CMD_INIT_WINDOW Our window is ready to use.
android_app->window contains
the window surface.

APP_CMD_TERM_WINDOW The current window has to be
terminated. android_app-
>window still contains it, but will
be set to NULL after calling
android_app_exec_cmd.

APP_CMD_WINDOW_RESIZED Window has been resized. New
size can be found by querying
android_app->window.

APP_CMD_* events

APP_CMD_WINDOW_REDRAW_NEEDED Window needs to be redrawn
before calling
android_app_exec_cmd()

APP_CMD_CONTENT_RECT_CHANGED Content area of the window
has changed (e.g. input
window being shown or
hidden). New content rect is in
android_app->contentRect

APP_CMD_GAINED_FOCUS Our app has gained input focus

APP_CMD_LOST_FOCUS Our app has lost input focus

APP_CMD_CONFIG_CHANGED Device configuration has
changed

APP_CMD_* events

APP_CMD_LOW_MEMORY We should reduce memory use

APP_CMD_START Our activity has been started

APP_CMD_RESUME Our activity has resumed

APP_CMD_SAVE_STATE We should save our current state
(allocated with malloc, will be
freed automatically - must not
contain pointers, file descriptors
etc.) to android_app->savedState
and android_app->savedStateSize

APP_CMD_PAUSE Our activity has been paused

APP_CMD_STOP Our activity has been stopped

APP_CMD_DESTROY We're being destroyed. Clean up.

android_app

int32_t (*onInputEvent)(struct android_app *app,
AInputEvent *event);

A callback we can implement to receive input events. When the
callback is invoked, the event has already been pre-dispatched. The
callback should return 1 if it handled the event, or 0 to trigger default
dispatching (if any).

ANativeActivity *activity;

The ANativeActivity object from the lower level Native Activity code

AConfiguration *config;

The device configuration the app is running in

android_app

void *savedState;
size_t savedStateSize;

Saved state information from the previous instance (may be NULL, e.g.
on first invokation or if a previous instance failed to save its state for
any reason). The format of this is defined by you - it is whatever you
return when getting the APP_CMD_SAVE_STATE event.

ALooper *looper;

Pointer to the app's main ALooper (event loop) instance.

AInputQueue *inputQueue;

Pointer to the input queue from which user events are received (may
be NULL)

android_app

ANativeWindow *window;

The window surface our app can draw in (may be NULL)

ARect contentRect;

The rectangle in which we can place content seen by the user

int activityState;

The activity's current state. Currently (4.4, NDK r9d), can take
APP_CMD_START, APP_CMD_RESUME, APP_CMD_PAUSE or
APP_CMD_STOP.

android_app

int destroyRequested;

Non-zero when the application's NativeActivity is being destroyed.

The android_app structure has a few more members, but those are for
internal use by Android Native App Glue only. They're not useful to
anything using it, and they may change at any time. Accessing them is
not a good idea.

ALooper - the main event loop

After initializing, our Android Native App Glue app needs to listen to
the ALooper instance in the android_app object. The main function of
interest is

int ALooper_pollOnce(int timeoutMillis, int *outFd, int
*outEvents, void **outData);

It waits for events to become available, with an optional timeout in
milliseconds (a timeout of zero polls the FDs being watched and
returns immediately, a negative timeout waits indefinitely until an
event appears).

If any event that wasn't handled by a callback occured, outFd,
outEvents and outData contain the poll events and data associated with
the event.

ALooper_pollOnce return value

ALooper_pollOne returns an identifier >= 0 if its file descriptor has
data not already handled by a callback function, or one of

ALOOPER_POLL_WAKE poll was awoken prematurely by
something calling ALooper_wake
on it

ALOOPER_POLL_CALLBACK one or more callbacks were run

ALOOPER_POLL_TIMEOUT the timeout expired without any
events

ALOOPER_POLL_ERROR An error occurred.

ALooper
A variant of ALooper_pollOnce is

int ALooper_pollAll(int timeoutMillis, int *outFd, int
*outEvents, void **outData);

The difference between pollOnce and pollAll is that pollAll doesn't
return if a callback has been invoked - it keeps waiting until an event
not handled by a callback has occurred, ALooper_wake() is called, or
the timeout has expired.

void ALooper_wake(ALooper *looper);

can be used on any thread to cause the ALooper_poll* calls to return
immediately, returning ALOOPER_POLL_WAKE.

ALooper

int ALooper_addFd(ALooper *looper, int fd, int ident,
int events, ALooper_callbackFunc callback, void *data);

adds another file descriptor to be monitored to the event loop. ident is
an identifier that must be >= 0, and will be the return value of
ALooper_poll* if an event was triggered. events is a bit mask
containing events on which we should wake up
(ALOOPER_EVENT_INPUT, _OUTPUT, _ERROR, _HANGUP, _INVALID),
callback is a callback function to be run on any events (or NULL),
data is custom data passed to the callback.

The prototype for a callback function is
int ALooper_callbackFunc(int fd, int events, void
*data);

int ALooper_removeFd(ALooper *looper, int fd);
removes the file descriptor from the ALooper.

Qt

A higher level alternative is using the Qt toolkit (http://qt-project.org/).

Qt is an Open Source (LGPL v2.1 and GPL v3), Cross-Platform UI
framework for people using C++ and/or QML (a CSS & JavaScript like
language for UI creation). A commercial version is also available.

Qt is very mature and is the base of the KDE, LXQt (also known as
LXDE-Qt, the result of merging the LXDE and Razor-Qt) and Hawaii
desktop projects.

Recent versions of Qt support building Android apps directly, using the
same C++ code you'd run on your desktop device.

Internally, when creating an Android app, Qt creates a small Java shim
that takes care of Activity creation and passing events between the Qt
event loop and the Android event loop.

Qt

Qt comes with a tool called Ministro that allows the Qt libraries to be
shared across several apps using Qt (much like a shared library on a
regular Linux system), to avoid bloating every application by having to
bundle it with the libraries.

Ministro downloads only the components of Qt actually being used by
installed apps.

While Qt is a cross-platform toolkit, it also provides some integration
with Android specific features - such as providing access to Android
style assets (Assets are treated very much like Qt resources - except
they're accessed through "assets:" URLs rather than "qrc:").

Qt is definitely worth checking out, especially for applications that
need to run on desktop systems as well.

Apache Cordova

Cordova (http://cordova.apache.org/) is another approach to writing
Android apps without Java - it provides a JavaScript API to access
device/OS specific functions such as the camera, battery status,
accelerometer, files, geolocation, media, and widgets emulating the
look and feel of native Android widgets.

Essentially, this allows writing webapps with extended functionality.

SL4A

The SL4A (Scripting Layer for Android) project,
https://code.google.com/p/android-scripting/, aims to bring Python,
Perl, JRuby, Lua, BeanShell, JavaScript, Tcl and Shell scripting to
Android.

It seems to be in permanent alpha stage and not very active - but is
already useful for smaller tasks like learning a scripting language on
an Android device.

Questions? Comments?

Bernhard "Bero" Rosenkränzer, Linaro
bero@linaro.org

!

