
Embedded Linux Conference Europe 2015

Kernel
maintainership: an
oral tradition
– PRELIMINARY
VERSION –

(Image credit: Andrew Cheal under license CC BY-ND 2.0)

Gregory CLEMENT
Free Electrons
gregory.clement@free-electrons.com

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 1/1



Gregory CLEMENT

▶ Embedded Linux engineer and trainer at Free
Electrons

▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus

▶ Open-source contributor
▶ Contributing to kernel support for the Armada 370,

375, 38x, 39x and Armada XP ARM SoCs from
Marvell.

▶ Co-maintainer of mvebu sub-architecture (SoCs from
Marvell Engineering Business Unit)

▶ Living near Lyon, France

Free Electrons
Linux Experts

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 2/1



Motivation and Overview

▶ Motivation
▶ Implicit or unwritten rules.
▶ Make such rules more explicit.
▶ Help new maintainers and contributors.
▶ Guideline I would have liked to find.

▶ Overview
▶ The role of a maintainer
▶ Accepting a patch
▶ Interaction with other maintainers

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 3/1



The role of a maintainer

▶ Gathering patches for the subsystem
▶ Through emails.
▶ Sometime through a git tree.

▶ Reviewing the submitted patches
▶ Best case: accepted as is.
▶ Most often: ask for a new version pointing the part to improve.
▶ Worst case: rejected.

▶ Pushing the gathered patch to the upper subsystem
▶ Pull request to another maintainer.
▶ Or directly to Linus Torvalds.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 4/1



Becoming a maintainer

▶ Creating a new subsystem:
▶ Most obvious.
▶ Under arch/ usually a new family of a CPU or an SoC.
▶ Under driver/ usually a new framework or a specialization of an existing class

driver.

▶ Joining the current maintainer:
▶ After being active in the subsystem especially by doing review.
▶ Generally asked by the current maintainer(s) but sometime after offering the help.

▶ Replacing a maintainer:
▶ Either co-opt by the current maintainer before leaving.
▶ Or asked by upper maintainer because of your involvement in this subsystem.
▶ Or on a volunteering base often because you need to push your own patches.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 5/1



Expectation of the submitter

▶ Reviewing the patch in a couple of days (or hours)
▶ Writing and testing the code took a long time,

reviewing it would be fast.
▶ Eager to have a feedback to make things move on.

▶ Knowing the hardware by heart
▶ As maintainer of the subsystem you appear as the

expert of the hardware it supports.
▶ You supposed to have all the variant of the hardware.

▶ Updating the status of the submitted patches
▶ Letting know if the patches have been received,

reviewed, applied or rejected.
▶ Expected to be done in real time.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 6/1



Expectation of the upper maintainer

▶ Don’t introduce any breakage.

▶ No merge conflict.

▶ No regression.

(Image credit: Mike Pennington under license CC BY-SA 2.0)

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 7/1



Timeline for the submission of a patch 1/2

▶ At least one week between submission and being applied
▶ Let time to interested to review the series
▶ Could be shorter for a new version of a series already reviewed

▶ Stay in linux-next one week before being submitted to the upper subsystem
▶ Allow to fix merge conflicts before creating an immutable branch.
▶ Could be shorter if already been in linux-next before or if the change is well

contained.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 8/1



Timeline for the submission of a patch 2/3

▶ Deeper is the subsystem, longer will be the time between submission and merged
in mainline

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 9/1



Timeline for the submission of a patch 3/3

▶ As the Linux release candidate are weekly, then for a subsystem at N-1, series
submitted after -rc6 (or rc7) won’t be in next release.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 10/1



Accepting a patch

▶ Obvious criteria
▶ Must respect the coding rules (use checkpatch for this).
▶ Must compiled without warning.

▶ No regression.
▶ Testing the hardware is nice to have but not mandatory.

▶ For a new device feature or device you can assume it was tested by the submitter.
▶ Ask for a tested by from other user if you have any doubt.
▶ Rely on testing farm if you can.

▶ Be careful of dependencies to the other subsystem.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 11/1



Organization of the subsystem git tree

▶ At least 2 branches:
▶ current for gathering the fixes of the current release candidate.
▶ for-next for gathering the patches for the next release candidate.

▶ Could be useful to have a third branch for the release candidate after.
▶ Could have topic branches:

▶ For big subsystem such as arm-soc.
▶ To let other subsystems merge your subsystem related part of series (see later).

▶ Based on the -rc1 to make the merge easier.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 12/1



The stable kernels

▶ Most of the user use kernel from a distribution.

▶ Most of the distribution use stable kernel

▶ When receiving a fix always ask if it could be useful for older kernel.

▶ Tag the commit with Cc:<stable@vger.kernel.org>.

▶ Even better use the tag Fixes: SHA-1_ID ("title of the patch").

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 13/1



The linux-next kernel 1/2

▶ The place where all are merged the commits expected to be in kernel after the
next merge window closes.

▶ How to use it as a maintainer
▶ The branches merged in linux-next have to be declared to Stephen Rothwell.
▶ Send him an email with the name of the repository and the branch to merge.
▶ Do not have to be an immutable branch: all the branches are merged again for each

linux-next release (on a daily basis).

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 14/1



The linux-next kernel 2/2

▶ Benefit of being in linux-next
▶ Being merged every day with all the other branches allows detecting the merge

conflict early.
▶ As a bonus Stephen often came with the resolution of the conflict.
▶ Used by the autobuilder such as 0-Day done by 01.org from Intel or the

kernelci supported by Linaro.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 15/1



Dealing with your own patches

▶ You are a maintainer but you remain a developer.

▶ You have the possibility to directly applied your own patches.

▶ Not really in the spirit of an open development.

▶ Still good to have review and suggestion.

▶ However most of the time you won’t get a review as you are supposed to be the
one who review!

▶ But still apply the submission process: waiting at least one week after submitting
on the mailing list before applying it in your next branch.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 16/1



Coordinating with the co-maintainers 1/2

▶ Subsystems maintained more and more often by several’s peoples.
▶ Benefits:

▶ Allow to be more responsive especially if located in distant timezone.
▶ Avoid having a stalled subsystem during holidays.
▶ Ease the turn over: easier to leave and easier to join a team.

▶ Drawbacks
▶ Need to able to find an agreement in case of opposite opinions.
▶ Need to coordinate.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 17/1



Coordinating with the co-maintainers 2/2

▶ Each co-maintainer has her/his own interests and fields of expertise.
▶ Spread the review.
▶ Allow staying focused.

▶ An acked-by given by a co-maintainer is enough.
▶ Only one co-maintainer gathering the patches and taking care of the pull requests

for a given kernel release cycle.
▶ Easier to keep the track of the submitted patches.
▶ The git repository remains shared at least for emergency.
▶ Better to decide in advance who will be the next in charge.

▶ Coordinating by email is fine most of the time.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 18/1



Coordinating with the maintainers of other subsystem 1/2

▶ Some series modify several subsystems in the same time.

▶ Dependencies between the patches.

▶ We want that the kernel be bisectable.

▶ The order in which the patches are applied matters.

▶ Can’t predict in which order the subsystem will be merged.

▶ Need to synchronize with the maintainers of other subsystems to solve this.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 19/1



Coordinating with the maintainers of other subsystem 2/2

▶ One maintainer takes all the series:
▶ Will have commits modifying another subsystem in her/his git tree.
▶ May cause conflict merge.

▶ One maintainer create an immutable branch
▶ A topic branch with only the patch from the series.
▶ Will be in both tree: it will avoid the merge conflict.
▶ If a fix is needed it can’t be squashed, have to be a separate commit.

▶ Merging the series in two kernel releases:
▶ No merge conflict.
▶ No immutable branch.
▶ But the feature is delayed of at least 3 months.
▶ Still possible to have the feature by delaying the clean-up in the second release.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 20/1



Submitting the gathered patches 1/2

▶Identify the patch to apply
when reading the emails.

M-x gnus-registry-set-article-mark under emacs
or by using patchwork.

▶Apply them on your branch. M-x dvc-gnus-article-apply-patch under emacs.

▶Add your Signed-off-by (as
you are going to submit them
you have to do it).

git commit --amend -s --no-edit

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 21/1



Submitting the gathered patches 2/2

▶Signed your branch git tag -s tag_name branch_name

▶Push your branch on your
public repository

git push public_repo tags/tag_name

▶Generate the pull request
cover letter:

git request-pull previous_tag public_repo \

tags/tag_name | cat

previous_tag is either the tag previously pulled during
the last request or the rc1 of the current kernel.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 22/1



Final words

▶ Find the good balance between
maintainer duty and submitter
expectation.

▶ Be nice and helpful with the submitter
especially the new ones.

▶ Remain vigilant about the code quality
and stability of the kernel.

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 23/1



Questions?

Gregory CLEMENT
gregory.clement@free-electrons.com

Slides under CC-BY-SA 3.0
http://free-electrons.com/pub/conferences/2015/elce/clement-kernel-maintainership-oral-

tradition

free electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 24/1

http://free-electrons.com/pub/conferences/2015/elce/clement-kernel-maintainership-oral-tradition
http://free-electrons.com/pub/conferences/2015/elce/clement-kernel-maintainership-oral-tradition

