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Background

• RISC-V Foundation

• ISA (Instruction set architecture) is open

• Don’t say the implementation is open, but there are some open RISC-V implementations

• Adopt often used instruction set (scrap and build)

• Simple = the size of CPU would be small, but code size would increase

• Enable to select standard extension which are really used

• Approach to echo system like toolchain, simulator/VM, OS porting

• Domain specific extension

• Strive for performance of application

• pros and cons : porting issues, maintenance cost

RISC-V becomes popular
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Background

Selection of configuration

• RISC-V : Select standard extension

• Linux :  Select Linux kernel modules

Foundation

• RISC-V Foundation

• The Linux Foundation

Open Source ?

• Universities and companies open the RISC-V implementation, they are not using same language

• Linux kernel has only 1 repository, and C language.

⇒ Because the resources of OSS development are distributed, the merit of OSS is not so high.

Points of common and difference: Is RISC-V similar with Linux®?
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Goal

Increasing choices of CPU for embedded system is good.

⇒ Evaluate for that embedded system can replaced current CPU with RISC-V

⇒ The benchmark of CPU performance like CoreMark® was done

Evaluate RISC-V from RTOS point of view assuming Embedded system

• Code size(text size)

• Measurement of jitter by perf

Don’t evaluate from HW point of view in this presentation

• The number of gate

• Estimate limit performance of CPU frequency

Evaluation of Embedded CPU
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Goal

System configuration for evaluation

• HW : HiFive1 board (not rev. B) of SiFive

• Easy to get

• Open the implementation (FPGA version)

• RTOS : TOPPERS/ASP

• By architecture independent implementation, compare the code size

• ASP has perf, which can measure some points like act_tsk in RTOS.

Just for reference, also measure NUCLEO-F401RE (Arm® Cortex®-M4). However, 

CoreMark performance : 3.42 CoreMarks/MHz (※1) is not suitable for comparing

Measurement of code size and perf by TOPPERS/ASP on HiFive1

※1: https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4

https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
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Goal

• RISC-V board compatible with Arduino

• FE310-G000 RISC-V SoC

• RV32IMAC：RV32 standard instruction(I), (M)ultiply, (A)tomic, (C)ompressed

• Instruction cache : 16KB

• DTIM : 16KB

• Performance

• By Data sheet : 2.73 CoreMarks/MHz (※１)

• By actual survey : 1.496 CoreMarks/MHz (※２)

• SPI Flash memory

About HiFive1 board and FE310-G000

※1: https://sifive.cdn.prismic.io/sifive%2Ffeb6f967-ff96-418f-9af4-a7f3b7fd1dfc_fe310-g000-ds.pdf
※２：http://msyksphinz.hatenablog.com/entry/2017/03/22/014143

https://sifive.cdn.prismic.io/sifive/feb6f967-ff96-418f-9af4-a7f3b7fd1dfc_fe310-g000-ds.pdf
http://msyksphinz.hatenablog.com/entry/2017/03/22/014143
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Goal

• About TOPPERS/ASP (※1)

• Based on ITRON specification, developed highly complete Real-time kernel

• Major target is embedded system needs high reliability, safety, real-time performance.

• In terms of software volume, the program size (binary code) of major target is from several 

tens MB to 1MB

• ASP (Advanced Standard Profile) = TOPPERS JSP (standard profile conform to μITRON4.0 

spec) was extended and improved

• As other kernels, there are HRP kernel(memory protection) and SMP kernel(Multicore)

• ASP3 : Add tickles feature into ASP kernel. Configurator was developed by Ruby.

• From May 2019, RISC-V(HiFive1 board) is supported by ASP and the source is opened.

Introduction to TOPPERS/ASP

※１: https://www.toppers.jp/asp-kernel.html

https://www.toppers.jp/asp-kernel.html


© 2019 Kioxia Corporation. All Rights Reserved. 9

Approach

Construct build environment for TOPPERS/ASP of RISC-V

Build TOPPERS/ASP in build environment ⇒ measure the code size (1)

Procedure Description

Install toolchain Download from SiFive’s HP : riscv64-unknown-elf-gcc-8.3.0-

2019.08.0-x86_64-linux-ubuntu14.tar.gz

Get asp source code and tool Download from TOPPERS’s HP

Common code: asp-1.9.3.tar.gz

Target specific code : asp_arch_riscv32_gcc-1.9.3.tar.gz

Configurator : cfg-linux-static-1_9_3.gz

Setting multi arch for Host

(Configurator run in 32bit 

environment)

$ sudo dpkg --add-architecture i386

$ sudo aptitude update

$ sudo aptitude install -y libc6-dev-i386

Fix asp source code Compiler name : riscv32-unknown-elf→riscv64-unknown-elf

Change STACK_SIZE : default 4K > less than 1536 B
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Approach

Build sample for measuring code size

Bulid each perf for measuring latency histogram (e.g. perf0)

Build TOPPERS/ASP in build environment ⇒ measure the code size (2)

$ mkdir asp/OBJ-SAMPLE

$ cd asp/OBJ-SAMPLE

$../configure -T ../target/hifive1_gcc/

$ make clean && make depend && make

$ mkdir asp/OBJ-PERF0

$ cd asp/OBJ-PERF0

$ ../configure -T ../target/hifive1_gcc/ -A perf0 -a ../test -U "test_lib.o histogram.o"

$ make clean && make depend && make
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Approach

Measure code size of *.o and asp binary by size command

• each object files of common code

• Don’t measure target specific code and generated code by configurator

• Measure asp (ELF binary), include target specific code

Build TOPPERS/ASP in build environment ⇒ measure the code size (3)

common code

target specific 

code

asp source code

compile object files link
asp

(ELF binary)

size command

to retrieve text size
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Approach

Setup runtime environment

• Install screen

• Install openocd, prep for openocd.cfg

• Install gdb, prep for .gdbinit

Runtime

• (a) By openocd & gdb, write perf binary in HiFive1 and Run

• text: 0x20000000(SPI Flash)

• data: 0x80000000(DTIM)

• (b) Get perf’s result by screen

Measure latency of important point by running perf

HiFive1 PC（Linux OS)
USB 

(serial)

screen
openocd

& gdb

asp 

binary

(perf)
(a)

(b)
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Approach

perf0

• Do nothing with loop, measuring the overhead of timestamp function

perf1

• Time between when low priority task do wup_tsk to high priority task and when the high priority 
task start to run

• Time between when high priority task do slp_tsk and when low priority task start to run

perf4

• The processing time of act_tsk without task switch

• The processing time of act_tsk with task switch

• The processing time of iact_tsk from cyclic handler (not task context)

After each perf run 10000 times, perf output the result with the histogram format

Evaluation program perf of TOPPERS/ASP
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Issues in work process

• Install toolchain (Build toolchain)

• Retrieve source code and tool from several web sites

• To run cfg(configurator of asp) needs 32 bit environment

• Some Linux distribution don’t support 32bit

• Need to multi arch setting for 32bit binary in Debian

• Need to fix source code for measuring

• Need to prepare for openocd cfg file

• Need to prepare for gdb init file

⇒ Solution1 : Create docker container for build/runtime environment of 
TOPPERS/ASP

Problem1 : It requires a lot of work to construct build/runtime environment



© 2019 Kioxia Corporation. All Rights Reserved. 15

Issues in work process

• Run perf0 with default. The result is 0 or 1000 or INT_MAX

• By test_utm1, found default get_utm doesn’t have monotonous increase

⇒ Solution2:  Implement get_utm function to get timestamp with micro seconds order

Problem2 : The bug of default get_utm (timestamp) function

Performance evaluation program (0)

Measurement overhead

0 : 9988

> 1000 : 10

> INT_MAX : 2

system performance time goes back: 18616001(CYC) 18616000(TSK)

system performance time goes back: 18647001(TSK) 18647000(CYC)

system performance time goes back: 18649001(TSK) 18649000(CYC)

system performance time goes back: 18663001(TSK) 18663000(CYC)

system performance time goes back: 18667001(TSK) 18667000(CYC)
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Issues in work process

• TOPPERS/ASP on NUCLEO-F401RE run with CPU 84Mhz

• On the other hand, TOPPERS/ASP on HiFive1 run with CPU 16MHz

• The difference of CPU frequency is too large

⇒ Solution3 : Setting of PLL, change the CPU frequency.

Problem3 : The low CPU frequency
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Deal with these issues

Solution1 : Easy to construct build/runtime environment by docker

(a) Build asp by docker build command

• Install some packages to build and run asp

• Retrieve asp source code and configurator

• Get toolchain and install it

• Setting of multi arch for 32bit binary

• Apply some patch files for asp source code

• Build asp to create sample and perf binaries.

(b) Run asp (perf) on HiFive1 board by docker run command

• Run screen command in docker

• Run openocd command in docker

• Run gdb command with perf binary in docker
HiFive1 PC（Linux OS)

USB 

(serial)

screen openocd & gdb

asp binary

(perf)

docker

docker container

asp source 

code

(a)

(b)
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Deal with these issues

Refer to registers which count up by 

CPU frequency

• mcycle

• mcycleh

Measure CPU frequency at boot 

time (ASP do by default)

• SystemFrequency

⇒ Calculate micro seconds 

timestamp from register values

Solution2 : Implement get_utm function to get timestamp with micro seconds

+#ifdef OMIT_GET_UTM

+#include "target_timer.h"

+ER

+get_utm(SYSUTM *p_sysutm)

+{

+    SYSUTM  utime = 0;

+    uint32_t mcycle_low, mcycle_high;

+    uint32_t mcycle_high_tmp;

+

+    do {

+        mcycle_high_tmp = read_csr(mcycleh);

+        mcycle_low = read_csr(mcycle);

+        mcycle_high = read_csr(mcycleh);

+    } while (mcycle_high_tmp != mcycle_high);

+

+    /* change clock count into micro sec */

+    utime += (SYSUTM)(mcycle_low / (SystemFrequency / 1000000));

+    utime += (SYSUTM)(UINT_MAX / (SystemFrequency / 1000000) * mcycle_high);

+

+    *p_sysutm = utime;

+

+    return(E_OK);

+}

+#endif
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Deal with these issues

Solution3 : Change CPU frequency by setting of PLL

• TOPPERS ASP run with CPU frequency 16Mhz by default

• By macro DEFAULT_CLOCK

• According to PLL specification, it run with 256Mhz

• Measuring actual CPU frequency on HiFive1, it run with more than 280Mhz

• Modify PLL setting to change CPU frequency

• According to PLL specification, R=1 F=41 Q=3 will be 84Mhz, but the actual 

CPU frequency on HiFive1 was 94Mhz

• By R=1 F=37 Q=3, the actual CPU frequency on HiFive1 is almost 86Mhz.
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Measurement result

Compiler (both use compressed instructions)

• Arm® core：gcc version 8.3.1 20190703 
(release) [gcc-8-branch revision 273027] 
(GNU Tools for Arm Embedded Processors 8-
2019-q3-update)

• RISC-V： gcc version 8.3.0 (SiFive GCC 
8.3.0-2019.08.0)

Comparison of code size (text size)

• RISC-V increases 17.8 % than Arm® core,  
regarding to sum of common object files

• RISC-V increases 10.3 % than Arm® core, 
regarding to asp bianry

Evaluation of code size

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

alarm.o
banner.o

cyclic.o
dataqueue.o

eventflag.o
exception.o
interrupt.o

log_output.o
logtask.o

mailbox.o
mempfix.o
pridataq.o
sample1.o

semaphore.o
serial.o
start.o

startup.o
strerror.o

sys_manage.o
syslog.o

t_perror.o
task.o

task_except.o
task_manage.o

task_refer.o
task_sync.o

time_event.o
time_manage.o

vasyslog.o
wait.o

sum of *.o
asp

CODE SIZE(TEXT) BYTES

RISC-V FE310-G000

Arm® Cortex®-M4
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Measurement result

perf0 : Evaluation of overhead when measuring
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Measurement result

perf0 : Evaluation of overhead when measuring : consideration to latency

Latency by instruction 

cache when RISC-V run 

code at first time

Timer interrupt ⇒ latency 

by the interrupt handler
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Measurement result

perf1 : Evaluation of task switch by wup_tsk

> 1000
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Measurement result

perf1 : Evaluation of task switch by wup_tsk : consideration to latency

> 1000

• When RISC-V run code at first time, 

the latency is over 1000us by 

instruction cache
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Measurement result

perf1 : Evaluation of task switch by slp_tsk
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Measurement result

perf1 : Evaluation of task switch by slp_tsk : consideration to latency

• By “task switch by slp_tsk” before, the 

instruction cache is already filled, and it doesn’t 

cause large latency like 1000us.

• But timer interrupt influences the latency
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Measurement result

perf4 : Evaluation of act_tsk without task switch
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Measurement result

perf4 : Evaluation of act_tsk with task switch
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Measurement result

perf4 : Evaluation of iact_tsk from cyclic handler
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Conclusion

Evaluate code size and perf by TOPPERS/ASP on HiFive1

• Problems and Solutions

• Requires a lot of work to construct build/runtime environment⇒ easy to do by docker

• The bug of timestamp function ⇒ Add get_utm for this evaluation

• CPU frequency ⇒ Change CPU Frequency by PLL

• Evaluation result: code size

• Sum of object files of ASP for RISC-V increases 17.8 % than ASP for Arm® Cortex®-M4

• Evaluation result: latency by perf

• Instruction cache and timer interrupt influence latency

• If there is a kind of timer like systic of Arm® core, it could reduce the influence.

• For Instruction cache, measurement is needed, like FW load text in boot time or run the code 

at once before application start
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