
© 2019 Kioxia Corporation. All Rights Reserved.

The evaluation of RISC-V HiFive1 board
by using TOPPERS/ASP

December 13, 2019

Kioxia Corporation

Institute of Memory Technology Research & Development

System Technology Research & Development Center

Masahiro Yamada

© 2019 Kioxia Corporation. All Rights Reserved. 2

1. Background

2. Goal

3. Approach

4. Issues in work process

5. Deal with these issues

6. Measurement result

7. Conclusion

Agenda

© 2019 Kioxia Corporation. All Rights Reserved. 3

Background

• RISC-V Foundation

• ISA (Instruction set architecture) is open

• Don’t say the implementation is open, but there are some open RISC-V implementations

• Adopt often used instruction set (scrap and build)

• Simple = the size of CPU would be small, but code size would increase

• Enable to select standard extension which are really used

• Approach to echo system like toolchain, simulator/VM, OS porting

• Domain specific extension

• Strive for performance of application

• pros and cons : porting issues, maintenance cost

RISC-V becomes popular

© 2019 Kioxia Corporation. All Rights Reserved. 4

Background

Selection of configuration

• RISC-V : Select standard extension

• Linux : Select Linux kernel modules

Foundation

• RISC-V Foundation

• The Linux Foundation

Open Source ?

• Universities and companies open the RISC-V implementation, they are not using same language

• Linux kernel has only 1 repository, and C language.

⇒ Because the resources of OSS development are distributed, the merit of OSS is not so high.

Points of common and difference: Is RISC-V similar with Linux®?

© 2019 Kioxia Corporation. All Rights Reserved. 5

Goal

Increasing choices of CPU for embedded system is good.

⇒ Evaluate for that embedded system can replaced current CPU with RISC-V

⇒ The benchmark of CPU performance like CoreMark® was done

Evaluate RISC-V from RTOS point of view assuming Embedded system

• Code size(text size)

• Measurement of jitter by perf

Don’t evaluate from HW point of view in this presentation

• The number of gate

• Estimate limit performance of CPU frequency

Evaluation of Embedded CPU

© 2019 Kioxia Corporation. All Rights Reserved. 6

Goal

System configuration for evaluation

• HW : HiFive1 board (not rev. B) of SiFive

• Easy to get

• Open the implementation (FPGA version)

• RTOS : TOPPERS/ASP

• By architecture independent implementation, compare the code size

• ASP has perf, which can measure some points like act_tsk in RTOS.

Just for reference, also measure NUCLEO-F401RE (Arm® Cortex®-M4). However,

CoreMark performance : 3.42 CoreMarks/MHz (※1) is not suitable for comparing

Measurement of code size and perf by TOPPERS/ASP on HiFive1

※1: https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4

https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4

© 2019 Kioxia Corporation. All Rights Reserved. 7

Goal

• RISC-V board compatible with Arduino

• FE310-G000 RISC-V SoC

• RV32IMAC：RV32 standard instruction(I), (M)ultiply, (A)tomic, (C)ompressed

• Instruction cache : 16KB

• DTIM : 16KB

• Performance

• By Data sheet : 2.73 CoreMarks/MHz (※１)

• By actual survey : 1.496 CoreMarks/MHz (※２)

• SPI Flash memory

About HiFive1 board and FE310-G000

※1: https://sifive.cdn.prismic.io/sifive%2Ffeb6f967-ff96-418f-9af4-a7f3b7fd1dfc_fe310-g000-ds.pdf
※２：http://msyksphinz.hatenablog.com/entry/2017/03/22/014143

https://sifive.cdn.prismic.io/sifive/feb6f967-ff96-418f-9af4-a7f3b7fd1dfc_fe310-g000-ds.pdf
http://msyksphinz.hatenablog.com/entry/2017/03/22/014143

© 2019 Kioxia Corporation. All Rights Reserved. 8

Goal

• About TOPPERS/ASP (※1)

• Based on ITRON specification, developed highly complete Real-time kernel

• Major target is embedded system needs high reliability, safety, real-time performance.

• In terms of software volume, the program size (binary code) of major target is from several

tens MB to 1MB

• ASP (Advanced Standard Profile) = TOPPERS JSP (standard profile conform to μITRON4.0

spec) was extended and improved

• As other kernels, there are HRP kernel(memory protection) and SMP kernel(Multicore)

• ASP3 : Add tickles feature into ASP kernel. Configurator was developed by Ruby.

• From May 2019, RISC-V(HiFive1 board) is supported by ASP and the source is opened.

Introduction to TOPPERS/ASP

※１: https://www.toppers.jp/asp-kernel.html

https://www.toppers.jp/asp-kernel.html

© 2019 Kioxia Corporation. All Rights Reserved. 9

Approach

Construct build environment for TOPPERS/ASP of RISC-V

Build TOPPERS/ASP in build environment ⇒ measure the code size (1)

Procedure Description

Install toolchain Download from SiFive’s HP : riscv64-unknown-elf-gcc-8.3.0-

2019.08.0-x86_64-linux-ubuntu14.tar.gz

Get asp source code and tool Download from TOPPERS’s HP

Common code: asp-1.9.3.tar.gz

Target specific code : asp_arch_riscv32_gcc-1.9.3.tar.gz

Configurator : cfg-linux-static-1_9_3.gz

Setting multi arch for Host

(Configurator run in 32bit

environment)

$ sudo dpkg --add-architecture i386

$ sudo aptitude update

$ sudo aptitude install -y libc6-dev-i386

Fix asp source code Compiler name : riscv32-unknown-elf→riscv64-unknown-elf

Change STACK_SIZE : default 4K > less than 1536 B

© 2019 Kioxia Corporation. All Rights Reserved. 10

Approach

Build sample for measuring code size

Bulid each perf for measuring latency histogram (e.g. perf0)

Build TOPPERS/ASP in build environment ⇒ measure the code size (2)

$ mkdir asp/OBJ-SAMPLE

$ cd asp/OBJ-SAMPLE

$../configure -T ../target/hifive1_gcc/

$ make clean && make depend && make

$ mkdir asp/OBJ-PERF0

$ cd asp/OBJ-PERF0

$../configure -T ../target/hifive1_gcc/ -A perf0 -a ../test -U "test_lib.o histogram.o"

$ make clean && make depend && make

© 2019 Kioxia Corporation. All Rights Reserved. 11

Approach

Measure code size of *.o and asp binary by size command

• each object files of common code

• Don’t measure target specific code and generated code by configurator

• Measure asp (ELF binary), include target specific code

Build TOPPERS/ASP in build environment ⇒ measure the code size (3)

common code

target specific

code

asp source code

compile object files link
asp

(ELF binary)

size command

to retrieve text size

© 2019 Kioxia Corporation. All Rights Reserved. 12

Approach

Setup runtime environment

• Install screen

• Install openocd, prep for openocd.cfg

• Install gdb, prep for .gdbinit

Runtime

• (a) By openocd & gdb, write perf binary in HiFive1 and Run

• text: 0x20000000(SPI Flash)

• data: 0x80000000(DTIM)

• (b) Get perf’s result by screen

Measure latency of important point by running perf

HiFive1 PC（Linux OS)
USB

(serial)

screen
openocd

& gdb

asp

binary

(perf)
(a)

(b)

© 2019 Kioxia Corporation. All Rights Reserved. 13

Approach

perf0

• Do nothing with loop, measuring the overhead of timestamp function

perf1

• Time between when low priority task do wup_tsk to high priority task and when the high priority
task start to run

• Time between when high priority task do slp_tsk and when low priority task start to run

perf4

• The processing time of act_tsk without task switch

• The processing time of act_tsk with task switch

• The processing time of iact_tsk from cyclic handler (not task context)

After each perf run 10000 times, perf output the result with the histogram format

Evaluation program perf of TOPPERS/ASP

© 2019 Kioxia Corporation. All Rights Reserved. 14

Issues in work process

• Install toolchain (Build toolchain)

• Retrieve source code and tool from several web sites

• To run cfg(configurator of asp) needs 32 bit environment

• Some Linux distribution don’t support 32bit

• Need to multi arch setting for 32bit binary in Debian

• Need to fix source code for measuring

• Need to prepare for openocd cfg file

• Need to prepare for gdb init file

⇒ Solution1 : Create docker container for build/runtime environment of
TOPPERS/ASP

Problem1 : It requires a lot of work to construct build/runtime environment

© 2019 Kioxia Corporation. All Rights Reserved. 15

Issues in work process

• Run perf0 with default. The result is 0 or 1000 or INT_MAX

• By test_utm1, found default get_utm doesn’t have monotonous increase

⇒ Solution2: Implement get_utm function to get timestamp with micro seconds order

Problem2 : The bug of default get_utm (timestamp) function

Performance evaluation program (0)

Measurement overhead

0 : 9988

> 1000 : 10

> INT_MAX : 2

system performance time goes back: 18616001(CYC) 18616000(TSK)

system performance time goes back: 18647001(TSK) 18647000(CYC)

system performance time goes back: 18649001(TSK) 18649000(CYC)

system performance time goes back: 18663001(TSK) 18663000(CYC)

system performance time goes back: 18667001(TSK) 18667000(CYC)

© 2019 Kioxia Corporation. All Rights Reserved. 16

Issues in work process

• TOPPERS/ASP on NUCLEO-F401RE run with CPU 84Mhz

• On the other hand, TOPPERS/ASP on HiFive1 run with CPU 16MHz

• The difference of CPU frequency is too large

⇒ Solution3 : Setting of PLL, change the CPU frequency.

Problem3 : The low CPU frequency

© 2019 Kioxia Corporation. All Rights Reserved. 17

Deal with these issues

Solution1 : Easy to construct build/runtime environment by docker

(a) Build asp by docker build command

• Install some packages to build and run asp

• Retrieve asp source code and configurator

• Get toolchain and install it

• Setting of multi arch for 32bit binary

• Apply some patch files for asp source code

• Build asp to create sample and perf binaries.

(b) Run asp (perf) on HiFive1 board by docker run command

• Run screen command in docker

• Run openocd command in docker

• Run gdb command with perf binary in docker
HiFive1 PC（Linux OS)

USB

(serial)

screen openocd & gdb

asp binary

(perf)

docker

docker container

asp source

code

(a)

(b)

© 2019 Kioxia Corporation. All Rights Reserved. 18

Deal with these issues

Refer to registers which count up by

CPU frequency

• mcycle

• mcycleh

Measure CPU frequency at boot

time (ASP do by default)

• SystemFrequency

⇒ Calculate micro seconds

timestamp from register values

Solution2 : Implement get_utm function to get timestamp with micro seconds

+#ifdef OMIT_GET_UTM

+#include "target_timer.h"

+ER

+get_utm(SYSUTM *p_sysutm)

+{

+ SYSUTM utime = 0;

+ uint32_t mcycle_low, mcycle_high;

+ uint32_t mcycle_high_tmp;

+

+ do {

+ mcycle_high_tmp = read_csr(mcycleh);

+ mcycle_low = read_csr(mcycle);

+ mcycle_high = read_csr(mcycleh);

+ } while (mcycle_high_tmp != mcycle_high);

+

+ /* change clock count into micro sec */

+ utime += (SYSUTM)(mcycle_low / (SystemFrequency / 1000000));

+ utime += (SYSUTM)(UINT_MAX / (SystemFrequency / 1000000) * mcycle_high);

+

+ *p_sysutm = utime;

+

+ return(E_OK);

+}

+#endif

© 2019 Kioxia Corporation. All Rights Reserved. 19

Deal with these issues

Solution3 : Change CPU frequency by setting of PLL

• TOPPERS ASP run with CPU frequency 16Mhz by default

• By macro DEFAULT_CLOCK

• According to PLL specification, it run with 256Mhz

• Measuring actual CPU frequency on HiFive1, it run with more than 280Mhz

• Modify PLL setting to change CPU frequency

• According to PLL specification, R=1 F=41 Q=3 will be 84Mhz, but the actual

CPU frequency on HiFive1 was 94Mhz

• By R=1 F=37 Q=3, the actual CPU frequency on HiFive1 is almost 86Mhz.

© 2019 Kioxia Corporation. All Rights Reserved. 20

Measurement result

Compiler (both use compressed instructions)

• Arm® core：gcc version 8.3.1 20190703
(release) [gcc-8-branch revision 273027]
(GNU Tools for Arm Embedded Processors 8-
2019-q3-update)

• RISC-V： gcc version 8.3.0 (SiFive GCC
8.3.0-2019.08.0)

Comparison of code size (text size)

• RISC-V increases 17.8 % than Arm® core,
regarding to sum of common object files

• RISC-V increases 10.3 % than Arm® core,
regarding to asp bianry

Evaluation of code size

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

alarm.o
banner.o

cyclic.o
dataqueue.o

eventflag.o
exception.o
interrupt.o

log_output.o
logtask.o

mailbox.o
mempfix.o
pridataq.o
sample1.o

semaphore.o
serial.o
start.o

startup.o
strerror.o

sys_manage.o
syslog.o

t_perror.o
task.o

task_except.o
task_manage.o

task_refer.o
task_sync.o

time_event.o
time_manage.o

vasyslog.o
wait.o

sum of *.o
asp

CODE SIZE(TEXT) BYTES

RISC-V FE310-G000

Arm® Cortex®-M4

© 2019 Kioxia Corporation. All Rights Reserved. 21

Measurement result

perf0 : Evaluation of overhead when measuring

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120 140 160 180 200

Fr
e

q
u

e
n

cy

Latency(micro sec)

perf0 histogram

Arm® Cortex®-M4 84Mhz RISC-V FE310-G000 86Mhz RISC-V FE310-G000 283Mhz

© 2019 Kioxia Corporation. All Rights Reserved. 22

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120 140 160 180 200

Fr
e

q
u

e
n

cy

Latency(micro sec)

perf0 histogram

Arm® Cortex®-M4 84Mhz RISC-V FE310-G000 86Mhz RISC-V FE310-G000 283Mhz

Measurement result

perf0 : Evaluation of overhead when measuring : consideration to latency

Latency by instruction

cache when RISC-V run

code at first time

Timer interrupt ⇒ latency

by the interrupt handler

© 2019 Kioxia Corporation. All Rights Reserved. 23

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 100 200 300 400 500 600 700 800 900 1000

Fr
e

q
u

e
n

cy

Latency(micro sec)

perf1 wup_tsk histogram

Arm® Cortex®-M4 84Mhz RISC-V FE310-G000 86Mhz RISC-V FE310-G000 283Mhz

Measurement result

perf1 : Evaluation of task switch by wup_tsk

> 1000

© 2019 Kioxia Corporation. All Rights Reserved. 24

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 100 200 300 400 500 600 700 800 900 1000

Fr
e

q
u

e
n

cy

Latency(micro sec)

perf1 wup_tsk histogram

Arm® Cortex®-M4 84Mhz RISC-V FE310-G000 86Mhz RISC-V FE310-G000 283Mhz

Measurement result

perf1 : Evaluation of task switch by wup_tsk : consideration to latency

> 1000

• When RISC-V run code at first time,

the latency is over 1000us by

instruction cache

© 2019 Kioxia Corporation. All Rights Reserved. 25

Measurement result

perf1 : Evaluation of task switch by slp_tsk

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120

Fr
e

q
u

e
n

cy

Latency(micro sec)

perf1 slp_tsk histogram

Arm® Cortex®-M4 84Mhz RISC-V FE310-G000 86Mhz RISC-V FE310-G000 283Mhz

© 2019 Kioxia Corporation. All Rights Reserved. 26

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120

Fr
e

q
u

e
n

cy

Latency(micro sec)

perf1 slp_tsk histogram

Arm® Cortex®-M4 84Mhz RISC-V FE310-G000 86Mhz RISC-V FE310-G000 283Mhz

Measurement result

perf1 : Evaluation of task switch by slp_tsk : consideration to latency

• By “task switch by slp_tsk” before, the

instruction cache is already filled, and it doesn’t

cause large latency like 1000us.

• But timer interrupt influences the latency

© 2019 Kioxia Corporation. All Rights Reserved. 27

Measurement result

perf4 : Evaluation of act_tsk without task switch

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700 800 900

Fr
e

q
u

e
n

cy

Latency(micro sec)

perf4 act_tsk without task switch histogram

Arm® Cortex®-M4 84Mhz RISC-V FE310-G000 86Mhz RISC-V FE310-G000 283Mhz

© 2019 Kioxia Corporation. All Rights Reserved. 28

Measurement result

perf4 : Evaluation of act_tsk with task switch

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40 50 60 70 80 90 100

Fr
e

q
u

e
n

cy

Latency(micro sec)

perf4 act_tsk with task switch histogram

Arm® Cortex®-M4 84Mhz RISC-V FE310-G000 86Mhz RISC-V FE310-G000 283Mhz

© 2019 Kioxia Corporation. All Rights Reserved. 29

Measurement result

perf4 : Evaluation of iact_tsk from cyclic handler

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300 350

Fr
e

q
u

e
n

cy

Latency(micro sec)

perf4 iact_tsk with task switch histogram

Arm® Cortex®-M4 84Mhz RISC-V FE310-G000 86Mhz RISC-V FE310-G000 283Mhz

© 2019 Kioxia Corporation. All Rights Reserved. 30

Conclusion

Evaluate code size and perf by TOPPERS/ASP on HiFive1

• Problems and Solutions

• Requires a lot of work to construct build/runtime environment⇒ easy to do by docker

• The bug of timestamp function ⇒ Add get_utm for this evaluation

• CPU frequency ⇒ Change CPU Frequency by PLL

• Evaluation result: code size

• Sum of object files of ASP for RISC-V increases 17.8 % than ASP for Arm® Cortex®-M4

• Evaluation result: latency by perf

• Instruction cache and timer interrupt influence latency

• If there is a kind of timer like systic of Arm® core, it could reduce the influence.

• For Instruction cache, measurement is needed, like FW load text in boot time or run the code

at once before application start

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Other company names, product names, and service names may be trademarks of their respective companies.

