The evaluation of RISC-V HiFivel board
by using TOPPERS/ASP

December 13, 2019

Kioxia Corporation

Institute of Memory Technology Research & Development
System Technology Research & Development Center
Masahiro Yamada

Agenda

1. Background

2. Goal

3. Approach

4. Issues in work process
5. Deal with these issues
6. Measurement result
/. Conclusion

KIOXIA

Background

 RISC-V Foundation
ISA (Instruction set architecture) is open

« Don't say the implementation is open, but there are some open RISC-V implementations

Adopt often used instruction set (scrap and build)
« Simple = the size of CPU would be small, but code size would increase
 Enable to select standard extension which are really used

Approach to echo system like toolchain, simulator/VM, OS porting

Domain specific extension
« Strive for performance of application
e pros and cons : porting issues, maintenance cost

KIOXIA © 2019 Kioxia Corporation. All Rights Reserved. 3

Background

Selection of confiquration

« RISC-V : Select standard extension
« Linux: Select Linux kernel modules
Foundation

* RISC-V Foundation

 The Linux Foundation

Open Source ?

« Universities and companies open the RISC-V implementation, they are not using same language
« Linux kernel has only 1 repository, and C language.

= Because the resources of OSS development are distributed, the merit of OSS is not so high.

KIOXIA © 2019 Kioxia Corporation. All Rights Reserved. 4

Goal

Evaluation of Embedded CPU

Increasing choices of CPU for embedded system is good.

= Evaluate for that embedded system can replaced current CPU with RISC-V
= The benchmark of CPU performance like CoreMark® was done

Evaluate RISC-V from RTOS point of view assuming Embedded system

 Code size(text size)

 Measurement of jitter by perf

Don’t evaluate from HW point of view in this presentation
 The number of gate

« Estimate limit performance of CPU frequency

KIOXIA © 2019 Kioxia Corporation. All Rights Reserved. 5

Goal

Measurement of code size and perf by TOPPERS/ASP on HiFivel

System configuration for evaluation
« HW : HiFivel board (not rev. B) of SiFive
 Easy to get

* Open the implementation (FPGA version)

« RTOS : TOPPERS/ASP
« By architecture independent implementation, compare the code size

* ASP has perf, which can measure some points like act_tsk in RTOS.

Just for reference, also measure NUCLEO-F401RE (Arm® Cortex®-M4). However,
CoreMark performance : 3.42 CoreMarks/MHz (24¢1) is not suitable for comparing

¢ 1: https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4

KIOXIA © 2019 Kioxia Corporation. All Rights Reserved. 6

https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4

Goal

* RISC-V board compatible with Arduino
« FE310-GO000 RISC-V SoC
« RV32IMAC : RV32 standard instruction(l), (M)ultiply, (A)tomic, (C)ompressed
 Instruction cache : 16KB
 DTIM : 16KB
« Performance
« By Data sheet : 2.73 CoreMarks/MHz (3¢ 1)
* By actual survey : 1.496 CoreMarks/MHz (3% 2)

« SPI Flash memory

X 1: https://sifive.cdn.prismic.io/sifive%2Ffeb6f967-ff96-418f-9af4-a7f3b7fd1dfc_fe310-g000-ds.pdf
X 2 : http://msyksphinz.hatenablog.com/entry/2017/03/22/014143

KIOXIA © 2019 Kioxia Corporation. All Rights Reserved. 7

https://sifive.cdn.prismic.io/sifive/feb6f967-ff96-418f-9af4-a7f3b7fd1dfc_fe310-g000-ds.pdf
http://msyksphinz.hatenablog.com/entry/2017/03/22/014143

Goal

Introduction to TOPPERS/ASP

« About TOPPERS/ASP (3x1)
« Based on ITRON specification, developed highly complete Real-time kernel
« Major target is embedded system needs high reliability, safety, real-time performance.

« |In terms of software volume, the program size (binary code) of major target is from several
tens MB to 1MB

« ASP (Advanced Standard Profile) = TOPPERS JSP (standard profile conform to yITRON4.0
spec) was extended and improved

« As other kernels, there are HRP kernel(memory protection) and SMP kernel(Multicore)
« ASP3: Add tickles feature into ASP kernel. Configurator was developed by Ruby.
 From May 2019, RISC-V(HiFivel board) is supported by ASP and the source is opened.

% 1: https://www.toppers.jp/asp-kernel.html

KIOXIA © 2019 Kioxia Corporation. All Rights Reserved. 8

https://www.toppers.jp/asp-kernel.html

Approach

Build TOPPERS/ASP in build environment = measure the code size (1)

Construct build environment for TOPPERS/ASP of RISC-V

Install toolchain

Get asp source code and tool

Setting multi arch for Host
(Configurator run in 32bit
environment)

Fix asp source code

KIOXIA

Download from SiFive’s HP : riscv64-unknown-elf-gcc-8.3.0-
2019.08.0-x86_64-linux-ubuntul4.tar.gz

Download from TOPPERS’s HP

Common code: asp-1.9.3.tar.gz

Target specific code : asp_arch_riscv32_gcc-1.9.3.tar.gz
Configurator : cfg-linux-static-1_9 3.9z

$ sudo dpkg --add-architecture i386

$ sudo aptitude update
$ sudo aptitude install -y libc6-dev-i386

Compiler name : riscv32-unknown-elf—riscv64-unknown-elf
Change STACK_SIZE : default 4K > less than 1536 B

© 2019 Kioxia Corporation. All Rights Reserved.

9

Approach

Build sample for measuring code size

$ mkdir asp/OBJ-SAMPLE
$ cd asp/OBJ-SAMPLE

$../configure -T ../target/hifivel gcc/
$ make clean && make depend && make

Bulid each perf for measuring latency histogram (e.g. perf0)

$ mkdir asp/OBJ-PERFO
$ cd asp/OBJ-PERFO

$../configure -T ../target/hifivel_gcc/ -A perfO -a ../test -U "test_lib.o histogram.o”
$ make clean && make depend && make

KIOXIA © 2019 Kioxia Corporation. All Rights Reserved. 10

Approach

Measure code size of *.0 and asp binary by size command

« each object files of common code

« Don’t measure target specific code and generated code by configurator

« Measure asp (ELF binary), include target specific code

common code

. . . . asp
target specific comple object files e (ELF binary)
code t)

asp source code size command

to retrieve text size

KIOXIA © 2019 Kioxia Corporation. All Rights Reserved. 11

Approach

Setup runtime environment

 Install screen
 Install openocd, prep for openocd.cfg

« Install gdb, prep for .gdbinit bﬁlsaf’ry
Runtime (0622)
« (a) By openocd & gdb, write perf binary in HiFivel and Run screen ogecnggd
« text: 0x20000000(SPI Flash) (b) :
. data: 0x80000000(DTIM) HiFivel :USB PC (Linux OS)
* (b) Get perf’s result by screen (serial)

KIOXIA © 2019 Kioxia Corporation. All Rights Reserved. 12

Approach

perfo
* Do nothing with loop, measuring the overhead of timestamp function

perfl

« Time between when low priority task do wup_tsk to high priority task and when the high priority
task start to run

« Time between when high priority task do slp_tsk and when low priority task start to run

perf4
« The processing time of act_tsk without task switch

« The processing time of act_tsk with task switch
« The processing time of iact_tsk from cyclic handler (not task context)

After each perf run 10000 times, perf output the result with the histogram format

KIOXIA © 2019 Kioxia Corporation. All Rights Reserved. 13

Issues in work process

Probleml : It requires a lot of work to construct build/runtime environment

« Install toolchain (Build toolchain)
 Retrieve source code and tool from several web sites

« To run cfg(configurator of asp) needs 32 bit environment
« Some Linux distribution don’t support 32bit
* Need to multi arch setting for 32bit binary in Debian

* Need to fix source code for measuring
* Need to prepare for openocd cfg file
* Need to prepare for gdb init file

= Solutionl : Create docker container for build/runtime environment of
TOPPERS/ASP

KIOXIA © 2019 Kioxia Corporation. All Rights Reserved. 14

Issues in work process

* Run perfO with default. The result is 0 or 1000 or INT_MAX

Performance evaluation program (0)
Measurement overhead

0:9988

> 1000 : 10

> INT_MAX: 2

« By test utml, found default get_utm doesn’t have monotonous increase

system performance time goes back: 18616001(CYC) 18616000(TSK)
system performance time goes back: 18647001(TSK) 18647000(CYC)

system performance time goes back: 18649001(TSK) 18649000(CYC)
system performance time goes back: 18663001(TSK) 18663000(CYC)
system performance time goes back: 18667001(TSK) 18667000(CYC)

= Solution2: Implement get_utm function to get timestamp with micro seconds order

KIOXIA © 2019 Kioxia Corporation. All Rights Reserved. 15

Issues in work process

« TOPPERS/ASP on NUCLEO-F401RE run with CPU 84Mhz

* On the other hand, TOPPERS/ASP on HiFivel run with CPU 16MHz
« The difference of CPU frequency is too large

= Solution3 : Setting of PLL, change the CPU frequency.

KIOXIA © 2019 Kioxia Corporation. All Rights Reserved. 16

Deal with these issues

Solutionl : Easy to construct build/runtime environment by docker

(a) Build asp by docker build command docker container
 Install some packages to build and run asp B
* Retrieve asp source code and configurator | @ asp source '

: code

» Get toolchain and install it

 Setting of multi arch for 32bit binary |
- Apply some patch files for asp source code L e
- Build asp to create sample and perf binaries. | .
(b) Run asp (perf) on HiFivel board by docker run command e :

———————————————————————————————

: docker
* Run screen command in docker
* Run openocd command in docker HiEivel PC (Linux OS)

USB

* Run gdb command with perf binary in docker (serial

KIOXIA © 2019 Kioxia Corporation. All Rights Reserved. 17

Deal with these issues

+#ifdef OMIT_GET_UTM

Refer to registers which count up by +#include "target_timer."

+ER
C P U freq uen Cy +get_utm(SYSUTM *p_sysutm)
H
+ SYSUTM utime = 0;
d mcyC|e uint32_t mcycle_low, mcycle_high;
uint32_t mcycle_high_tmp;
* mcycleh

do{
mcycle_high_tmp = read_csr(mcycleh);
mcycle_low = read_csr(mcycle);
mcycle_high = read_csr(mcycleh);

} while (mcycle_high_tmp !'= mcycle_high);

Measure CPU frequency at boot
time (ASP do by default)

« SystemFrequency

[* change clock count into micro sec */
utime += (SYSUTM)(mcycle_low / (SystemFrequency / 1000000));
utime += (SYSUTM)(UINT_MAX / (SystemFrequency / 1000000) * mcycle_high);

= Calculate micro seconds
timestamp from register values

*p_sysutm = utime;

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+

return(E_OK);
+}
+#endif

KIOXIA © 2019 Kioxia Corporation. All Rights Reserved. 18

Deal with these issues

Solution3 : Change CPU frequency by setting of PLL

« TOPPERS ASP run with CPU frequency 16Mhz by default
By macro DEFAULT CLOCK

« According to PLL specification, it run with 256Mhz

* Measuring actual CPU frequency on HiFivel, it run with more than 280Mhz
 Modify PLL setting to change CPU frequency

« According to PLL specification, R=1 F=41 Q=3 will be 84Mhz, but the actual
CPU frequency on HiFivel was 94Mhz

« By R=1F=37 Q=3, the actual CPU frequency on HiFivel is almost 86Mhz.

KIOXIA © 2019 Kioxia Corporation. All Rights Reserved. 19

Measurement result

Evaluation of code size

Compiler (both use compressed instructions)

sum of *.o0
wait.o

« Arm® core . gcc version 8.3.1 20190703 vasyslog.0

time_manage.o
time_event.o

(release) [gcc-8-branch revision 273027] sk e

task_refer.o

(GNU Tools for Arm Embedded Processors 8- e

task.o
2019-g3-update) il
Sys_manage.o

 RISC-V : gcc version 8.3.0 (SiFive GCC i

start.o * RISC-V FE310-G000

8.3.0-2019.08.0) sermaphasetclii=r = Arme Cortexs M4

samplel.o

pridatag.o =

Comparison of code size (text size) mempfixo =

logtask.o f

- RISC-V increases 17.8 % than Arm® core, Tranito |
regarding to sum of common object files oriquests (=

banner.o |

* RISC-V increases 10.3 % than Arm® core, -

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

regarding to asp bianry CODE sizZ(TExT) BYTES

KIOXIA © 2019 Kioxia Corporation. All Rights Reserved. 20

Measurement result

perfO : Evaluation of overhead when measuring

perf0 histogram

o— Arm® Cortex®-M4 84Mhz o— RISC-V FE310-G000 86Mhz —— R|SC-V FE310-G000 283Mhz

Frequency

100

Latency(micro sec)

© 2019 Kioxia Corporation. All Rights Reserved. 21

KIOXIA

Measurement result

perfO : Evaluation of overhead when measuring : consideration to latency

perf0 histogram

o— Arm® Cortex®-M4 84Mhz o— RISC-V FE310-G000 86Mhz =—e— R|SC-V FE310-G000 283Mhz

>
o
f=
()]
=]
o
(]
S
w

100

Latency(micro sec)

© 2019 Kioxia Corporation. All Rights Reserved. 22

KIOXIA

Measurement result

perfl : Evaluation of task switch by wup_tsk

perfl wup_tsk histogram

o— Arm® Cortex®-M4 84Mhz o— RISC-V FE310-G000 86Mhz —e— RISC-V FE310-G000 283Mhz

Frequency

500

Latency(micro sec)

© 2019 Kioxia Corporation. All Rights Reserved. 23

KIOXIA

Measurement result

perfl : Evaluation of task switch by wup_tsk : consideration to latency

perfl wup_tsk histogram

o— Arm® Cortex®-M4 84Mhz o— RISC-V FE310-G000 86Mhz —e— RISC-V FE310-G000 283Mhz

>
o
(=
[
3
o
v
b=
¥ 9

500

Latency(micro sec)

© 2019 Kioxia Corporation. All Rights Reserved. 24

KIOXIA

Measurement result

perfl : Evaluation of task switch by slp_tsk

perfl slp_tsk histogram

o— Arm® Cortex®-M4 84Mhz o— RISC-V FE310-G000 86Mhz —— R|SC-V FE310-G000 283Mhz

Frequency

60

Latency(micro sec)

© 2019 Kioxia Corporation. All Rights Reserved. 25

KIOXIA

Measurement result

perfl : Evaluation of task switch by slp_tsk : consideration to latency

perfl slp_tsk histogram

o— Arm® Cortex®-M4 84Mhz o— RISC-V FE310-G000 86Mhz =—e— R|SC-V FE310-G000 283Mhz

>
o
f=
()]
=]
o
(]
S
w

(s]V)

Latency(micro sec)

© 2019 Kioxia Corporation. All Rights Reserved. 26

KIOXIA

Measurement result

perf4 : Evaluation of act_tsk without task switch

perfd act_tsk without task switch histogram

o— Arm® Cortex®-M4 84Mhz o— RISC-V FE310-G000 86Mhz —o— RISC-V FE310-G000 283Mhz

Frequency

w
o
o
o

400 500

Latency(micro sec)

© 2019 Kioxia Corporation. All Rights Reserved. 27

KIOXIA

Measurement result

perf4 : Evaluation of act_tsk with task switch

perfd act_tsk with task switch histogram

o— Arm® Cortex®-M4 84Mhz o— RISC-V FE310-G000 86Mhz —— R|SC-V FE310-G000 283Mhz

Frequency

50

Latency(micro sec)

© 2019 Kioxia Corporation. All Rights Reserved. 28

KIOXIA

Measurement result

perf4 : Evaluation of 1act_tsk from cyclic handler

perfd iact_tsk with task switch histogram

o— Arm® Cortex®-M4 84Mhz o— RISC-V FE310-G000 86Mhz —e— R|SC-V FE310-G000 283Mhz

Frequency

Latency(micro sec)

© 2019 Kioxia Corporation. All Rights Reserved. 29

KIOXIA

Conclusion

Evaluate code size and perf by TOPPERS/ASP on HiFivel

* Problems and Solutions

* Requires a lot of work to construct build/runtime environment = easy to do by docker

« The bug of timestamp function = Add get_utm for this evaluation

 CPU frequency = Change CPU Frequency by PLL
« Evaluation result: code size

« Sum of object files of ASP for RISC-V increases 17.8 % than ASP for Arm® Cortex®-M4
« Evaluation result: latency by perf

« |nstruction cache and timer interrupt influence latency

« [If there is a kind of timer like systic of Arm® core, it could reduce the influence.

 For Instruction cache, measurement is needed, like FW load text in boot time or run the code
at once before application start

KIOXIA © 2019 Kioxia Corporation. All Rights Reserved. 30

KIOXIA

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
Other company names, product names, and service names may be trademarks of their respective companies.

