Yocto Project®: Building and deploying containers with meta-virtualization: now & in the future

Bruce Ashfield, Xilinx

Yocto Project Virtual Summit Europe, October 29-30, 2020
Agenda

• Goals
• (Brief) History of meta-virtualization
• Technology timeline
• Why use the Yocto project for containers?
• Components of container build (and deployment)
• Past and current container build / deployment
• Future container build / deployment efforts
Presentation Goals

• Introduce the concepts driving container build and deploy
 - Not a how-to, not a survey
• Level set on the history
• Background / understanding of current capabilities
 - What is where, and how (why) it works ..
• Insight into direction and upcoming features
meta-virtualization: a brief history

- **Started June 2012**
 - 1306+ commits made by 155 contributors

- **Point of integration for ‘virtualization’ technologies**
 - VMs and containers
 - Core technology + support software
 - Many audiences: Bleeding edge and established tech
 - Tested (improving) and stable: needs CI
 - Baseline for creating OE derived virtualization solutions
 - Recipes migrate over time
meta-virtualization: technology timeline

- LXC
- XEN
- KVM
- docker
- containerd
- kvmtool
- runc
- cri-o
- k8s
- runv
- kata
- podman
- skopeo
- crun
- runx
- xvisor
- container img type
- oci
- tools
- oci img type
- sloCI

Years:
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019
- 2020
meta-virtualization: timeline summary

• Started with mainly VM solutions
 – now more container focused

• More solutions / choices than ever before
 – Very little has been removed / depreciated

• ‘Complexity’ has increased
 – Hence more complete solutions are possible

• Plumbing, tools and image assists
 – More are needed
Why the Yocto Project and containers

• Isn’t it all about the application?
 – Why care about building from source?

• Solves problems you don’t (yet) know you have

• Standards compliant and compatible

• Building block technologies
 – Choice: don’t pick winners and don’t lock in
 – Flexibility: Elements of the solution are spread through the ecosystem

• Configurability and tunability
What are container “build” and “deployment”?

- For our purposes:
 - build: compilation / construction from source of a container (or fetching of OE built artifacts)
 - deployment: installing a container on a target (or image)
Container Build

- OE core has base support
- Techniques have evolved over time
 - Iterative / multiple builds and external assembly
 - Multiconfig
 - OCI Image type
- Leverage Yocto Project core values
 - Embrace, not replace or duplicate
Container Build: Challenges

- Clunky / Confusing
 - Regardless of which method you use
 - Not ‘end user’ friendly
- Path to binary container construction / reuse
 - Commonly cited guides don’t apply
- Streamlining work is in progress
Container Deployment

• Not standardized (and shouldn’t be)
 – Varies based on container runtime
• Some options:
 – Direct image install
 – Registry / artifact repository push → pull
 – Management framework: k8s, k3s, etc
 – Custom ‘hacks’
Container Deployment: Challenges

• Not cross friendly
 - Daemons, root requirements, host requirements, licensing, reproducibility, etc
• Requirement creep
• Large set of runtimes and frameworks
Upcoming ...
Vision

• The Yocto Project as a 1st class platform for building CNCF technologies
 - Leveraging OE advantages and technologies, feeding into external solutions
 • Baked directly into the outputs

• Simple inherit to generate containerized recipe output
• Direct deploy to images, or management framework
• Binary artifacts / re-usable base containers
In progress / Upcoming (1/2)

- Streamlined build via bbclass
 - kernel-module-split style / dynamic packaging?
- Direct image install
 - Via -native tools
 - Autostart (depending on runtime)
- Multi-layer OCI container image build
 - Pluggable / flexible back end
In progress / Upcoming (2/2)

• Reference container host and app / system container images
• Target container (on host) rapid test
• Framework test / deployment streamlining
 – k8s, k3s, runX ..
Thanks for your time
What is the Yocto Project®?

IT'S NOT AN EMBEDDED LINUX DISTRIBUTION,
IT CREATES A CUSTOM ONE FOR YOU.

The Yocto Project (YP) is an open source collaboration project that helps developers create custom Linux-based systems regardless of the hardware architecture.

The project provides a flexible set of tools and a space where embedded developers worldwide can share technologies, software stacks, configurations, and best practices that can be used to create tailored Linux images for embedded and IOT devices, or anywhere a customized Linux OS is needed.