
Matthew Locke

November 2007

A Linux Power Management
Architecture

Agenda

 Introduction

 Features in Kernel and User space

 Pulling it together

 Future work

Introduction

 Typical mainline Linux power management features:

 Per platform idle loop allows platforms to place processor
in a low power state

 Suspend-to-RAM - memory in auto refresh, CPU in a low
power state, drivers in a low power state

 Cpu frequency scaling

 Of course, main target of these features is the x86 laptop

 Power management for embedded mobile devices has been
custom development per device and different for every SoC

 Over the last year, the mailing list and development activity
has increased dramatically

 2nd Linux PM Summit was held this year

System Suspend/Resume

 Recently the system suspend/resume code was
redesigned

 Better support for platform specific behavior

 Better support for hibernation (suspend-to-disk)

 Pm_ops were reworked to ensure system follows correct
steps to prepare for a suspend.

 Suspend-to-disk code is renamed to hibernation with a
clear distinction from suspend. Also, being reworked to
ensure memory snapshot, userspace and drivers are all
handled correctly for stable behavior.

 Expect longer life and more stable behavior on
your laptop in the next couple releases!

Cpufreq

 The cpufreq stack manages
the runtime power
management for the CPU.

 Some ACPI platforms trigger
voltage changes based on
CPU frequency changes.

 The embedded platforms do
not have a mechanism to
change voltage

 The “on-demand” governor
changes cpu frequency based
on load.

 Cpufreq is connected to the
clock framework only on
OMAP1 and OMAP2

Dynamic Tick / clockevent

 The whole time subsystem was redesigned to eliminate
the periodic timer which is very good for power
management.

 Clockevent is the bottom layer with High Resolution
Timers and time subsystem on top.

 Now there is an optimized platform independent way to
find the next event

 Platform idle loop uses this standard API to find the next
event and decide the course of action

Latency Framework

 Tracks minimal latency the system (including all drivers)
can tolerate in order not to break.

 API includes
 Register driver/subsystem with framework

 Set a latency constraint

 Subscribe to notification for latency changes

 Get system wide latency constraint

 Only a few drivers use the latency framework. It will take
a while for driver maintainers to update.

 An example is an audio driver that knows it will get an
interrupt when the hardware has 200 usec of samples left
in the DMA buffer; in that case the driver can set a
latency constraint of, say, 150 usec.

 Reworked into pm_qos patches

CPUidle Framework

 Framework for selecting optimal CPU power state in
the idle loop.

 CPU power states are defined by descriptors

 Builds on dynamic tick and latency framework

CPUidle Framework

 Two different governors are provided:
 Menu - analyzes the latency from the latency
framework, latency from the descriptor and the next
clockevent from dynamic tick to determine the
lowest cpu state possible

 Ladder - uses activity metrics to step the CPU
power state into the right mode. Mostly applicable
to ACPI platform

Operating Points

 Operating Point is a group of
power parameters set to specific
values.

 Parameters are CPU clock and
voltage but may include other
parameters such as bus clocks.

 Run time power consumption can
be reduced by lowering voltage
and frequency

 Several attempts were made over
the last year to mainline a
operating point implementation
but were rejected

 On x86 operating points are
hidden in ACPI so the challenge is
to get a solution that works for
other platforms without affecting
x86.

Current thinking is to incorporate
voltage scaling into the lower layer of
cpufreq

Device runtime power management

 Userspace control over driver power management is
being deprecated

 /sys/…/power/state file is removed

 Drivers are expected to manage their device power
management state during runtime to minimize power
consumption.

 Philosophy is that drivers know best when and how to put
a device into a low power state during runtime

 USB stack is leading this effort. USB stack has a
autosuspend/resume feature for the host and devices. It
watches for inactivity and turns stuff off.

OHM - Open Hardware Manager

 OHM is a small open source systems
daemon which sits above HAL and
abstracts out common hardware
management tasks such as system wide
inhibit action control

 The main use cases described are
taking action based on subsystem
inactivity

 Used by OLPC

 From OHM website

OLPC, maemo, and Moblin

 According to material presented at the PM
summit ‘07, Nokia’s stack looks similar to picture
on previous slide

 Moblin is a Intel sponsored/funded project for a
internet tablet application stack. A Policy
manager is a part of the stack and is currently
being designed.

 OLPC is working a policy manager based on
OHM

Pulling it all together…

 A pm architecture using the latest components enables
some very aggressive policies to reduce power
consumption.

Pulling it all together…

 Automatically setting cpu into lowest power
state possible when system is idle.

 Enabling drivers to drop into low power states
when inactive.

 Frequency and voltage scaling to reduce power
consumption at runtime.

What’s next

 Migrate more drivers to manage their own power states
following USB as the example

 Integrate voltage scaling for embedded platforms into
cpufreq somewhere

 More userspace development: OHM, policy managers,
HAL.

 Linux powered devices have the longest battery
life!

Matthew Locke

Mlocke@embeddedalley.com

408-386-1482

