
https://www.pengutronix.de

SocketCan and J1939

Oleksij Rempel – ore@pengutronix.de
Marc Kleine-Budde – mkl@pengutronix.de

mailto:ore@pengutronix.de
mailto:mkl@pengutronix.de

 2/28

My assumption about you

 What is J1939 and do I actually need it?
 I use this protocol as user space stack in some product and it

works for me. Why should I care about kernel stack?
 Just skip 1. and 2., and tell me how can I use the kernel

stack?!

 3/28

… spend some words on CAN

 something different than Ethernet
 2 wire cable
 speed up to 1 Mbit (only)
 8 bytes per frame

 4/28

CAN: every thing is a broadcast

 11 bit or 29 bit address
(CAN-ID)

 priorisation of CAN frames
by CAN-ID

 CSMCA (Carrier Sense
Multiple Collision Avoidance)

 CAN frames are broadcasted

 5/28

State of CAN infrastructure before 2013

Kernel

 Different kernel and user-
space drivers

 No compatibility
 No unified tooling
 Bad testing coverage

 6/28

SocketCAN now

Kernel

Protocol

 Hardware abstraction layer
 One socket interface for all

applications
 SoC vendors do mainline

linux CAN drivers

 7/28

SocketCAN isn‘t Rocket Science!

Linux Socket Layer

PF_CAN

routing and packet scheduler

eth0 can0 can1

CAN App 2

RX dispatcher/CAN core

CAN App 1

RAW ...

...

P
F

_I
N

E
T

 8/28

SocketCAN: infrastructure

 CAN-utils
 CAN-tests
 Wireshark
 …?

 9/28

CAN: 0...8 bytes per CAN frame (only)

A spoon of bytes!!!

 10/28

Main motivation for J1939

 CAN bus is slow and
packages are very small.

 11/28

For example IP Header is 20 Bytes...

 12/28

For example IP Header is 20 Bytes…

 13/28

What is SAE J1939?

Recommendation for:
 Physical Layer
 Defines PGNs (Parameter

Group Number)
 PGN identifies a message's

function and meaning of
associated data

 14/28

What is SAE J1939?

 Transport Protocol / Extended
Transport Protocol

 Reliable send/receive large
amounts of data

 Transport Protocol = 1792 bytes,
Extended Transport Protocol ~ 112
MiB

 15/28

J1939 TP is like TCP (20 Byte header !!!)

 16/28

How about UDP?! (8 byte header)

 17/28

SocketCAN with J1939 stack

 Same situation as with
Linux CAN

before SocketCAN
 Different user space and

kernel implementations

 18/28

Why kernel stack: CPU load and timings

 busy CAN bus about 2000
pps (or more?)

 (Spoons) per second * socket
 relative relaxed timing

requirements in general
 ...but not on a loaded single

core 400 MHz ARMv5 (imx28)

 19/28

Different user space implementations

 1. Multiple processes with userspace stack (J1939
daemon)

 2. One library used by different applications
 3. All in one. One application with J1939 stack and

many threads.
 4. Different J1939 stack variants per developer

 20/28

1. Multiple processes with userspace stack

 one J1939 process running to parse J1939 traffic and
communicate with multiple applications

 long round trip times:
 [Kernel - CAN_RAW socket] J1939 stack pipes/unix → →

domain sockets/tcp application→

 21/28

2. One library used by different applications

 the load on the CAN bus will be increased as well. For
example: more Address Claiming requests.

 Increased memory usage. For example: same TP or ETP
should be reconstructed separately multiple times on
same system.

 22/28

3. All in one

 no isolation of processes
 malfunction/security problem in one thread will affect

other applications/threads

 23/28

4. Different J1939 variants per developer

 Many end devices are made by chain of different
suppliers.

 Each chain part is using own software and great, special
version of J1939 stack.

 24/28

SAE J1939 Linux Kernel Implementation

 Should be able to cover:
 SAE J1939
 IsoBUS
 NMEA2000
 MilCAN A

 25/28

SAE J1939 Linux Kernel Implementation

 Simple programming model
 Well known socket interface.

 Better performance
 Kernel don't cares about

data or PGN except of: AC
and (E)TP

Kernel J1939

Transport

AC

 26/28

How to use kernel SAE J1939 stack?

 Jacd and jcat: https://github.com/linux-can/can-utils
 Kernel: Documentation/networking/j1939.rst

https://github.com/linux-can/can-utils
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/j1939.rst

 27/28

Challanges

 MTU: ~112 MiB (solved)
 Proper way to export

address claiming cache to
the userspace

 Quirky buses.
 Test automation (follow

osmocom testing
experience?)

https://www.pengutronix.de

Thank you!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

