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My assumption about you

 What is J1939 and do I actually need it?
 I use this protocol as user space stack in some product and it 

works for me. Why should I care about kernel stack? 
 Just skip 1. and 2., and tell me how can I use the kernel 

stack?!
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… spend some words on CAN

 something different than Ethernet
 2 wire cable
 speed up to 1 Mbit (only)
 8 bytes per frame
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CAN: every thing is a broadcast

 11 bit or 29 bit address 
(CAN-ID)

 priorisation of CAN frames 
by CAN-ID

 CSMCA (Carrier Sense 
Multiple Collision Avoidance)

 CAN frames are broadcasted
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State of CAN infrastructure before 2013

Kernel

 Different kernel and user-
space drivers

 No compatibility
 No unified tooling
 Bad testing coverage
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SocketCAN now

Kernel

Protocol

 Hardware abstraction layer
 One socket interface for all 

applications
 SoC vendors do mainline 

linux CAN drivers
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SocketCAN isn‘t Rocket Science!

Linux Socket Layer

PF_CAN

routing and packet scheduler
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SocketCAN: infrastructure

 CAN-utils
 CAN-tests
 Wireshark
 …?
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CAN: 0...8 bytes per CAN frame (only)

A spoon of bytes!!!
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Main motivation for J1939

 CAN bus is slow and 
packages are very small.
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For example IP Header is 20 Bytes...
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For example IP Header is 20 Bytes…
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What is SAE J1939?

Recommendation for:
 Physical Layer
 Defines PGNs (Parameter 

Group Number)
 PGN identifies a message's 

function and meaning of 
associated data
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What is SAE J1939?

 Transport Protocol / Extended 
Transport Protocol

 Reliable send/receive large 
amounts of data

 Transport Protocol = 1792 bytes, 
Extended Transport Protocol ~ 112 
MiB
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J1939 TP is like TCP (20 Byte header !!!)
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How about UDP?! (8 byte header)
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SocketCAN with J1939 stack

 Same situation as with 
Linux CAN

before SocketCAN
 Different user space and 

kernel implementations
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Why kernel stack: CPU load and timings

 busy CAN bus about 2000 
pps (or more?)

 (Spoons) per second * socket
 relative relaxed timing 

requirements in general
 ...but not on a loaded single 

core 400 MHz ARMv5 (imx28)
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Different user space implementations

 1. Multiple processes with userspace stack (J1939 
daemon)

 2. One library used by different applications
 3. All in one. One application with J1939 stack and 

many threads.
 4. Different J1939 stack variants per developer
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1. Multiple processes with userspace stack

 one J1939 process running to parse J1939 traffic and 
communicate with multiple applications                 

 long round trip times:
 [Kernel - CAN_RAW socket]  J1939 stack  pipes/unix → →

domain sockets/tcp  application→
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2. One library used by different applications

 the load on the CAN bus will be increased as well. For 
example: more Address Claiming requests.

 Increased memory usage. For example: same TP or ETP 
should be reconstructed separately multiple times on 
same system.
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3. All in one

 no isolation of processes
 malfunction/security problem in one thread will affect 

other applications/threads
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4. Different J1939 variants per developer

 Many end devices are made by chain of different 
suppliers.

 Each chain part is using own software and great, special 
version of J1939 stack.
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SAE J1939 Linux Kernel Implementation

 Should be able to cover:
 SAE J1939
 IsoBUS
 NMEA2000
 MilCAN A
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SAE J1939 Linux Kernel Implementation

 Simple programming model
 Well known socket interface.

 Better performance
 Kernel don't cares about 

data or PGN except of: AC 
and (E)TP

Kernel J1939

Transport

AC
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How to use kernel SAE J1939 stack?

 Jacd and jcat: https://github.com/linux-can/can-utils
 Kernel: Documentation/networking/j1939.rst

https://github.com/linux-can/can-utils
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/j1939.rst
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Challanges

 MTU: ~112 MiB (solved)
 Proper way to export 

address claiming cache to 
the userspace

 Quirky buses.
 Test automation (follow 

osmocom testing 
experience?)
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Thank you!

Questions?
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