
uClinux --
Micro-Controller Linux

Presented by

Greg Ungerer
<gerg@uclinux.org>

<gerg@snapgear.com>

SnapGear - A CyberGuard Company
825 Stanley St., Woolloongabba

QLD. 4102. Australia
PH: +61 7 3435 2888

www.snapgear.com

Outline

1. uClinux

2. Kernel

3. Libraries

4. Applications

5. Tools

6. Developing

7. Future Work

8. References

© Copyright 2005, Greg Ungerer, SnapGear Inc

uClinux

Pronounced "you-see-linux", the name uClinux comes from
combining the greek letter "mu" and the english capital
"C". "Mu" stands for "micro", and the "C" is for
"controller".

 Linux for processors that have no memory management

 patches against standard Linux kernel sources
 targets classic embedded 32bit micro-controllers

© Copyright 2005, Greg Ungerer, SnapGear Inc

Main Features

 open source project
 stable versions based on Linux kernels 2.0.39, 2.4.27 and
 2.6.10

 most features of Linux kernel available:
 - process control
 - filesystems
 - networking
 - device drivers

 modified kernel memory subsystem

 conventional kernel/application separation

© Copyright 2005, Greg Ungerer, SnapGear Inc

CPU Architectures

Supported architectures:

 Motorola 68k (68X302, 68306, 68X328, 68332, 68360)
 Motorola ColdFire (5206x, 5249, 527x, 5307, 5407)
 ARM (Atmel, NetSilicon, Aplio, TI, Samsung, ...)
 Sparc (LEON)
 MIPS (Brecis, ...)
 Xilinx Microblaze (FPGA)
 Altera NIOS (FPGA)
 NEC v850
 Hitachi H8/300, SH2

© Copyright 2005, Greg Ungerer, SnapGear Inc

CPU Architectures

Under Development:

 Motorola MCORE

 Opencores OpenRISC 1000

 Analog Devices Blackfin

 Intel i960

© Copyright 2005, Greg Ungerer, SnapGear Inc

Kernel Features

PROCESS: full multi-tasking process system,
 XIP supported
API: same system call set as standard Linux
IPC: software signals, shared memory!
FILESYS: ROMfs, ext2, NFS, SMB, JFFS(2), proc,
 ISO9660, CRAMfs, ...
NETWORK: TCP/IP, PPP (PAP, CHAP), masquerading,
 routing, filtering, forwarding, IPsec
DRIVERS: serial, network, timer, IDE, MTD, audio,
 LCD, watchdog, PCI bus, PCMCIA
MODULES: loadable modules supported

© Copyright 2005, Greg Ungerer, SnapGear Inc

Limitations

 no virtual memory

 no memory protection

 - between kernel, processes or hardware devices!

 no real fork(), only vfork()

 cannot dynamically grow stacks

 no conventional sbrk()

 memory fragmentation more of a problem

© Copyright 2005, Greg Ungerer, SnapGear Inc

MM Changes

• basic kernel allocation can be left 'as is'

 - power of 2 allocator not ideal

 - larger sized regions used for larger allocations

• obviously no page tables to setup/maintain

• no sbrk() system call, use mmap()/mfree()

 - library malloc() needs to use mmap()

• swapping not supported

© Copyright 2005, Greg Ungerer, SnapGear Inc

Stacks and Modes

• kernel and user stack setup same as on VM systems

• may need to emulate user and kernel stack pointers

 - keep usp and ksp global variables

 - swap at trap entry/exit

• kernel and user 'modes' also maintained

• may need to emulate user mode

 - maintain mode word in kernel variable

© Copyright 2005, Greg Ungerer, SnapGear Inc

fork() Problem

• copying existing data/stack regions is the real issue

• any copy will be at different location in address space

• absolute memory references after copying not valid

• no way to easily 'fixup' the moved data

• vfork() is fast and efficient

© Copyright 2005, Greg Ungerer, SnapGear Inc

Application Issues

 no MMU is largely transparent

 fork() needs to be dealt with on a case by case basis

 runtime limits on size of malloc()s

 - kernel has to find a free chunk of memory that size

 - memory fragmentation can be a problem

 need to think about stack usage and preset accordingly

© Copyright 2005, Greg Ungerer, SnapGear Inc

Application Methods
 new space saving file format, FLAT binary
 simple conversion from ELF format
 2 models of object loading/executing:

1. Relocated applications
 - program code, data and stack allocated and loaded
 in RAM
 - relocation entries are patched at exec() time

2. PIC applications
 - code is position independent (thus can be shared)
 - each process gets allocated data and stack in RAM
 - execute in place (XIP) possible

© Copyright 2005, Greg Ungerer, SnapGear Inc

Application Memory

Code (text)

DATA - initialized
 - bss

STACK

Malloc region 1

Malloc region 2

 code may be shared if
 PIC
 data+stack region
 allocated in 1 chunk
 code+data+stack
 allocated in 1 chunk if
 relocating
 malloc()/mmap() regions
 freed on program exit by
 kernel

© Copyright 2005, Greg Ungerer, SnapGear Inc

Libraries

 shared libraries supported on some platforms

 uClibc is preferred libc
 - small and light weight
 - mostly glibc compatible

 port of glibc exists on some platforms too
 - very large

 other supported libraries include:
 openssl, libpcap, libm, libdes, zlib, libpng, libjpeg

© Copyright 2005, Greg Ungerer, SnapGear Inc

Tools

 standard GNU cross compile tool chain
 - ELF format (older versions used COFF)

 binutils (2.14) for as, ld, ar, objcopy

 gcc (2.95.3) (includes c++ support)

 gdb (5.0)

 elf2flt - FLAT format conversion from ELF

 x86 Linux PC most often used as development host

© Copyright 2005, Greg Ungerer, SnapGear Inc

Developing

 get tool chain setup first
 - you need gas and gcc before you can port anything

 vendor development boards are an excellent start

 JTAG/BDM debugging hardware is _very_ useful

 supporting new boards with supported CPU is easy
 - existing board/platform support is pretty good

 supporting new CPU � s can be a lot of work

 uClinux 2.0.39 and 2.4.27 are very mature and very stable

© Copyright 2005, Greg Ungerer, SnapGear Inc

Future Work

 more CPU and platform support

 more hardware device support

 more applications ported

 shared library support on more architectures

 real time support (RTAI)

 maintaining source in mainline kernels

© Copyright 2005, Greg Ungerer, SnapGear Inc

References

 uClinux
 http://www.uclinux.org

 uClinux CVS
 http://cvs.uclinux.org

 uClinux (and embedded linux) news
 http://www.ucdot.org

 GNU tools and source
 http://www.gnu.org

© Copyright 2005, Greg Ungerer, SnapGear Inc

