
uClinux --
Micro-Controller Linux

Presented by

Greg Ungerer
<gerg@uclinux.org>

<gerg@snapgear.com>

SnapGear - A CyberGuard Company
825 Stanley St., Woolloongabba

QLD.  4102.  Australia
PH:  +61 7 3435 2888

www.snapgear.com



Outline

1.    uClinux

2.    Kernel

3.    Libraries

4.    Applications

5.    Tools

6.    Developing

7.    Future Work

8.    References

©  Copyright 2005, Greg Ungerer, SnapGear Inc



uClinux

Pronounced "you-see-linux", the name uClinux comes from 
combining the greek letter "mu" and the english capital 
"C". "Mu" stands for "micro", and the "C" is for 
"controller".

  Linux for processors that have no memory management

  patches against standard Linux kernel sources
  targets classic embedded 32bit micro-controllers

©  Copyright 2005, Greg Ungerer, SnapGear Inc



Main Features

  open source project
  stable versions based on Linux kernels 2.0.39, 2.4.27 and
   2.6.10

  most features of Linux kernel available:
     - process control
     - filesystems
     - networking
     - device drivers

  modified kernel memory subsystem

  conventional kernel/application separation

©  Copyright 2005, Greg Ungerer, SnapGear Inc



CPU Architectures

Supported architectures:

  Motorola 68k  (68X302, 68306, 68X328, 68332, 68360)
  Motorola ColdFire  (5206x, 5249, 527x, 5307, 5407)
  ARM  (Atmel, NetSilicon, Aplio, TI, Samsung, ...)
  Sparc  (LEON)
  MIPS (Brecis, ...)
  Xilinx Microblaze (FPGA)
  Altera NIOS (FPGA)
  NEC v850
  Hitachi H8/300, SH2

©  Copyright 2005, Greg Ungerer, SnapGear Inc



CPU Architectures

Under Development:

  Motorola MCORE

  Opencores OpenRISC 1000

  Analog Devices Blackfin

 Intel i960

©  Copyright 2005, Greg Ungerer, SnapGear Inc



Kernel Features

PROCESS:        full multi-tasking process system,
                           XIP supported
API:                   same system call set as standard Linux
IPC:                   software signals, shared memory!
FILESYS:         ROMfs, ext2, NFS, SMB, JFFS(2), proc,
                          ISO9660, CRAMfs, ...
NETWORK:     TCP/IP, PPP (PAP, CHAP), masquerading,
                          routing, filtering, forwarding, IPsec
DRIVERS:        serial, network, timer, IDE, MTD, audio,
                          LCD, watchdog, PCI bus, PCMCIA
MODULES:      loadable modules supported
                      

©  Copyright 2005, Greg Ungerer, SnapGear Inc



Limitations 

 no virtual memory

 no memory protection

    - between kernel, processes or hardware devices!

 no real fork(), only vfork()

 cannot dynamically grow stacks

 no conventional sbrk()

 memory fragmentation more of a problem

©  Copyright 2005, Greg Ungerer, SnapGear Inc



MM Changes

• basic kernel allocation can be left 'as is'

    - power of 2 allocator not ideal

    - larger sized regions used for larger allocations

• obviously no page tables to setup/maintain

• no sbrk() system call, use mmap()/mfree()

    - library malloc() needs to use mmap()

• swapping not supported
                      

©  Copyright 2005, Greg Ungerer, SnapGear Inc



Stacks and Modes

• kernel and user stack setup same as on VM systems

• may need to emulate user and kernel stack pointers

   - keep usp and ksp global variables

   - swap at trap entry/exit

• kernel and user 'modes' also maintained

• may need to emulate user mode

   - maintain mode word in kernel variable
                      

©  Copyright 2005, Greg Ungerer, SnapGear Inc



fork() Problem

• copying existing data/stack regions is the real issue

• any copy will be at different location in address space

• absolute memory references after copying not valid

• no way to easily 'fixup' the moved data

• vfork() is fast and efficient
                      

©  Copyright 2005, Greg Ungerer, SnapGear Inc



Application Issues

 no MMU is largely transparent

 fork() needs to be dealt with on a case by case basis

 runtime limits on size of malloc()s

     - kernel has to find a free chunk of memory that size

     - memory fragmentation can be a problem

 need to think about stack usage and preset accordingly

©  Copyright 2005, Greg Ungerer, SnapGear Inc



Application Methods
 new space saving file format, FLAT binary
 simple conversion from ELF format
 2 models of object loading/executing:

1.  Relocated applications
      - program code, data and stack allocated and loaded
        in RAM
      - relocation entries are patched at exec() time

2.  PIC applications
      - code is position independent (thus can be shared)
      - each process gets allocated data and stack in RAM
      - execute in place (XIP) possible

©  Copyright 2005, Greg Ungerer, SnapGear Inc



Application Memory

Code (text)

DATA  -  initialized
             -  bss

STACK

Malloc region 1

Malloc region 2

 code may be shared if
  PIC
 data+stack region
   allocated in 1 chunk
 code+data+stack 
   allocated in 1 chunk if 
   relocating
 malloc()/mmap() regions
   freed on program exit by
   kernel

©  Copyright 2005, Greg Ungerer, SnapGear Inc



Libraries

 shared libraries supported on some platforms

 uClibc is preferred libc
     - small and light weight
     - mostly glibc compatible

 port of glibc exists on some platforms too
     - very large

 other supported libraries include:
     openssl, libpcap, libm, libdes, zlib, libpng, libjpeg

©  Copyright 2005, Greg Ungerer, SnapGear Inc



Tools

 standard GNU cross compile tool chain
    - ELF format (older versions used COFF)

 binutils (2.14) for as, ld, ar, objcopy

 gcc (2.95.3) (includes c++ support)

 gdb (5.0)

 elf2flt - FLAT format conversion from ELF

 x86 Linux PC most often used as development host

©  Copyright 2005, Greg Ungerer, SnapGear Inc



Developing

 get tool chain setup first
    - you need gas and gcc before you can port anything

 vendor development boards are an excellent start

 JTAG/BDM debugging hardware is _very_ useful

 supporting new boards with supported CPU is easy
   - existing board/platform support is pretty good

 supporting new CPU � s can be a lot of work

 uClinux 2.0.39 and 2.4.27 are very mature and very stable

©  Copyright 2005, Greg Ungerer, SnapGear Inc



Future Work

 more CPU and platform support

 more hardware device support

 more applications ported

 shared library support on more architectures

 real time support (RTAI)

 maintaining source in mainline kernels

©  Copyright 2005, Greg Ungerer, SnapGear Inc



References

 uClinux
   http://www.uclinux.org     
 
 uClinux   CVS
   http://cvs.uclinux.org

 uClinux (and embedded linux) news
   http://www.ucdot.org 

 GNU tools and source
   http://www.gnu.org

©  Copyright 2005, Greg Ungerer, SnapGear Inc


