Automotive Ethernet: Future of Connected Vehicles

Ravi Patel, Sriranjani P
Agenda

- Automotive Systems and Network
- Current Trends in Automotive Networks
- The Future Requirements
- Motivation behind Automotive Ethernet
- Why not Conventional Ethernet?
- History and Evolution of Automotive Ethernet
- Protocol formats
- Different Technologies
- Support of Automotive Ethernet in Linux
- Automotive Ethernet PHY
- Conclusion
An automotive vehicle contains a lot of sensors, actuators and controllers.

- Connected by simple wire during initial days.
- Evolutions of components and its complexity increased over time.
- Requirement of serial bus or fieldbus instead of simple wire to fulfill requirements.
- Wiring harness:
 - 3rd highest cost component in a car.
 - Comprise 50% of the cost of labor for the entire car.
Current Trends in Automotive Networks

- CAN (Controller Area Network)
- MOST (Media Oriented Systems Transport)
- Ethernet AVB
- Collision Detection System
- Brake-by-Wire System
- FlexRay
- LIN (Local Interconnect Network)
- Multifunction Keyless System

Source: https://bit.ly/3yMvfXo
Current Trends in Automotive Networks

- **Embedded control**
 - **CAN-C**
 - arbitration (CSMA) dual wire
 - **CAN-B**
 - arbitration fault tolerant dual wire
 - **LIN**
 - time triggered master-slave single wire, no quartz
 - **J1850**

- **Multi media**
 - **D2B, MOST**
 - Optical ring
 - **Flexray, TTx**
 - time triggered (TDMA) fault tolerant, dependable 2x2 wire / optical
 - **Bluetooth**
 - wireless medium

Relative communication cost per node

The Future Requirements

- More bandwidth needed for new systems like Adaptive Cruise Control, Lane Detection, Around view monitoring etc.
- Keep number of wires less to reduce the wire complexity
- Software driver support in open source OS (e.g. Linux) for easy integration with infotainment system
- Low latency, reliable and real time to support systems like Cruise Control, Emergency Breaking, Stability Control system etc.
Motivation behind Automotive Ethernet

- High Bandwidth requirement
 - Row camera data
 - Data Logging (Government Regulations)
 - Map Data
 - High Resolution Displays
 - For instance, the LIDAR sensors needed for lane detection and other driver assistance applications require a 70 Mbps connection just for one sensor

- Reliable and cost effective network
- Minimum latency and precise timing
- Redundancy and security
- Precise Time Awareness
- Easy integration with TCP/IP protocol
- Lower silicon costs and space
Why not Conventional Ethernet?

- Higher number of wires
- Does not meet the OEM EMI/RFI requirements
- Does not provide the guaranteed latency in us range
- No support for bandwidth control for different streams
- No time synchronism mechanism
- Harsher environment conditions
 - Operating temperatures. (-40°C to 85°C for body/cabin and up to 125°C for chassis/powertrain)
 - Mechanical accelerations (up to 4G)
 - Automotive EMC requirements
- Safety/ASIL compliance
- Reliability (high MTBF)
- Very low standby power requirements
 - Standby power << 100uA
 - Wakeup time < 100-500ms
History and Evolution of Automotive Ethernet

<table>
<thead>
<tr>
<th>Applications</th>
<th>1st Generation</th>
<th>2nd Generation</th>
<th>3rd Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Subsystems and Diagnostics, ECU Flashing, Rear-view Cameras</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy-Efficient Ethernet (IEEE 802.3az)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial Networking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher Layer Protocols</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostics over IP (ISO 13400)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/V Bridging Gen 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/V Bridging Gen 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Link Layer Physical Layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 Base-Tx Fast Ethernet (IEEE 802.3u)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video Communication Interface (ISO 17215)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time-Triggered Ethernet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Protocol formats

- **Link-Layer Frame (same as conventional Ethernet)**

 ![Link-Layer Frame diagram]

 Source: https://bit.ly/38C0xFN

- **IP layer (same as conventional Ethernet)**

 ![IP layer diagram]

 Source: https://bit.ly/38uxOml
AUTOSAR (Automotive Open System Architecture)
- Formed in 2003 by major automotive OEMs to promote open standard automotive architecture
- Provides specifications of basic modules, application interfaces and data exchange standard
- Helps in establishing common ECU software architecture
- Uses three layer architecture: Basic Software, Runtime Environment and Application Layer

OPEN (Open Pair Ether-Net)
- A non-profit Special Interest Group (SIG) to encourage wide scale adoption of Ethernet based communication for in-vehicle networks
- Formed in 2011 by BMW, Broadcom and NXP
- Has introduced standards for testing the in-vehicle Ethernet systems in switches, ECUs.
- Helped in deploying 100BASE-T1, 1000BASE-T1, and 1000BASE-RH physical layers to be used within Automotive Ethernet.
PoE (Power over Ethernet)

- Originated in 2003 as IEEE 802.3af and introduced as IEEE 802.3bu in 2016 for Single Pair Ethernet which is intended for automotive applications.
- Powers the devices in the vehicle and eliminates the requirements of additional power sources.
- Reduces the wiring and its complexity.
- Protects the device from overload, under-powering and incorrect installation.

Source: https://bit.ly/3yK1GFT
EEE (Energy Efficient Ethernet)

- Specified as IEEE 802.3az in 2006 which attempts to save power on inactive Ethernet links.
- Node sends idle packet over link at specific interval when no data.
- Helps to save battery when engine is off.

Source: https://bit.ly/3sIRKZs
Different Technologies

- **Time Synchronization**
 - Known as Time Sensitive Networking (TSN) which was formed in 2012 by renaming existing Audio Video Bridging (AVB) group.
 - Standardized as IEEE 802.1AS which defines a protocol to synchronize reference time between distributed nodes in network.
 - Best clock determined by a best master clock algorithm which distributes clock information to all other capable nodes.
 - Used by time critical automotive applications like ADAS.

- **Diagnostics Over IP**
 - Vehicle diagnostics protocol based on ISO 13400 standard to analyze data from on-board computers and update firmware.
 - Enables remote vehicle diagnostics by managing communication between external tester tool and ECUs.
 - Uses dedicated diagnostics Ethernet connections and runs over TCP/IP.
 - Allows much data rates at lower cost compared to conventional CAN based diagnostics.
Support of Automotive Ethernet in Linux

Time Sensitive Networking (TSN)
- Set of Standards developed by IEEE Time-Sensitive Networking Task Group.
- Formed in 2012 from existing Audio/Video Bridging (AVB) Task Group.

Source: https://bit.ly/3FVe3k1
Time Sensitive Networking (TSN)

- Applicable to Data link layer.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>7: Application</td>
<td></td>
</tr>
<tr>
<td>6: Presentation</td>
<td></td>
</tr>
<tr>
<td>5: Session</td>
<td></td>
</tr>
<tr>
<td>4: Transport</td>
<td>UDP, TCP</td>
</tr>
<tr>
<td>3: Network</td>
<td>IP</td>
</tr>
<tr>
<td>2: Data Link</td>
<td>IEEE 802.1 today, IEEE 802.1 TSN future</td>
</tr>
<tr>
<td>1: Physical</td>
<td>e. g. 100 Mbits/s / 1 Gbits/s</td>
</tr>
</tbody>
</table>

Source: https://sie.ag/39zn5c5x
Time Sensitive Networking (TSN)

- TSN and AVB Protocols

Source: https://bit.ly/3FTTEMh
Time Synchronization

- Known as PTP (Precision Time Protocol)
- Much better than NTP (Network Time Protocol)
- Allows synchronization with an accuracy in nanoseconds
- Protocol:
 - Master clock and node is selected by Best Master Clock Algorithm (BMCA)
 - Master node provides clocking information to other nodes
 - All nodes must support PTP for effective time synchronization

- Kernel offers its own subsystem for controlling PTP hardware clocks (PHC).
- PTP at user level, kernel just provides hardware access to clocks
- Linuxptp – most popular user space PTP stack
- Linuxptp applications:
 - Ptp4l – Implementation of PTP
 - Ptp2sys – synchronize two clocks
 - Pmc – Send PTP management messages to PTP nodes

Source: https://bit.ly/3PtGWbq
Traffic Scheduling

- 802.1Qbv
- TSN control plane is implemented through Linux Traffic Control (TC) System.
- Supported via TC Queuing Disciplines (Qdiscs).
- Qdisc – A packet scheduler which decides time when packet is given to network hardware or application.
- Linux currently provides below qdiscs for TSN:
 - CBS qdisc: Credit Based Shaper introduced by 802.1 Qav
 - Time-Aware Priority Shaper (TAPRIO) qdisc: Implements simplified version of 802.1Qbv standard
 - Earliest TxTime First (ETF) Qdisc: enables the Lunchtime feature present in some NICs

TSN does not have only end devices. Switches and switched terminals also present.

Linux offers two frameworks for this:
- The Distributed Switch Architecture (DSA)
- Switchdev

DSA
- Introduced in 2008 to support Marvell switches
- Evolved to support other vendors also
- Concept of combine several individual switches to common logical component

Switchdev
- Focus on offloading as much work as possible to the hardware
- Not a Linux device model in traditional sense
Summary of TSN in Linux

<table>
<thead>
<tr>
<th>Standard</th>
<th>Alias</th>
<th>Linux Support</th>
<th>Linux Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1AS</td>
<td>Network Timing & Synchronization</td>
<td>In parts</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1Qav</td>
<td>Credit Based Shaping</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1Qbv</td>
<td>Traffic Scheduling</td>
<td>In parts</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1Qbu</td>
<td>Frame Preemption</td>
<td>In progress</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1Qbr</td>
<td>Frame Preemption</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1Qca</td>
<td>Path control & Reservation</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1Qcc</td>
<td>Stream Reservation</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1Qch</td>
<td>Cyclic Queuing</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1Qci</td>
<td>Pre-Stream Filtering</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1CB</td>
<td>Frame Replication & Elimination</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Automotive Ethernet PHY

- BroadR-Reach automotive Ethernet standard – release in 2011
- Later on IEEE 802.3bp (100BASE-T1) and 802.3bw (1000BASE-T1) was standardized

100 Mbps symmetrical operation using standard Ethernet PHY components

Full Duplex 100 Mbps single pair operation achieved

Only change is to wire-side, MAC-side remains the same

Source: https://bit.ly/3FWjUFD
Automotive Ethernet PHY

<table>
<thead>
<tr>
<th>100Base-T1</th>
<th>1000Base-T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developed for 100Mbps</td>
<td>Developed for 1000Mbps</td>
</tr>
<tr>
<td>Multi Level PAM-3 coding</td>
<td>Multi Level PAM-3 coding</td>
</tr>
<tr>
<td>600MHz bandwidth</td>
<td>600MHz bandwidth</td>
</tr>
<tr>
<td>Specified in 802.3bp</td>
<td>Specified in 802.bw</td>
</tr>
<tr>
<td>Supports single twisted pair upto 15 meters</td>
<td>Supports single twisted pair upto 15 meters with copper and upto 40 meters with optical fiber</td>
</tr>
<tr>
<td>Full duplex mode</td>
<td>Full duplex mode</td>
</tr>
<tr>
<td>Supports EEE (Energy Efficient Ethernet) as a optional</td>
<td>-</td>
</tr>
</tbody>
</table>
Automotive Technology evolved from simple IC engine to a moving combination of integrated computer systems like ADAS, Adaptive Cruise Control, hybrid engines, smart infotainment etc.

Cabling in a vehicle is 3rd highest cost and 3rd heaviest component. Simplifying and reducing cabling reduces:
- Fuel consumption
- Repair issues
- Manufacturing cost
- Production time

The recent advancement in automotive Ethernet is driving the reality of deploying Ethernet in automobile.

The industry is highly motivated by significant benefits of bandwidth, cost and weight.

Challenges:
- Development and Testing of Ethernet compatible ECUs and components
- Security of a system.
- Robust cabling to handle high electromagnetic interference (EMI).
- Tradeoff between data error correction and effective bandwidth.
Any Questions?
THANK YOU