
 Real-Time Failure
Real-time unix has been used successfully since at least the late
1980's in many diverse areas, including audio, video, manufacturing,
finance, test and measurement, and military applications. Linux
support for real-time has been actively developed and maintained in
the community since 2004, is included in several commercial
distributions, and is partially in the kernel.org tree, with features from
the out of tree patch set continuing to flow into the kernel.org tree.
Despite its relative youth, real-time Linux is very capable, but as with
the other real-time unix kernels there are many ways to fail when
attempting to create a real-time Linux solution. This presentation
probes some causes of failure that can be avoided.

 Frank Rowand, Sony Corporation of America April 12, 2009

 Real-Time Failure

Real-time Linux is very capable, but there are
many ways to fail when attempting to create
a real-time Linux solution.

 Real-Time Failure

Real-time Linux is very capable, but there are
many ways to fail when attempting to create
a real-time Linux solution.

This presentation looks at some causes of
failure that can be avoided.

 Real-Time Failure

Real-time Linux is very capable, but there are
many ways to fail when attempting to create
a real-time Linux solution.

This presentation looks at some causes of
failure that can be avoided.

The primary focus is Linux. But some examples
will not be Linux specific.

 Caveats

- There are many ways to cause failure. This
 talk only mentions a few of them.

- The “facts” presented are likely to be strongly
 dependent on the kernel version. This
 information is mostly based on 2.6.23 – 2.6.30.

section 1

 Definitions and Concepts

 What is Real Time?

It is determinism (being able to respond to a
stimulus before a deadline) with a given
load.

 What is Real Time?

It is determinism (being able to respond to a
stimulus before a deadline) with a given
load.

It is NOT fast response time.

 What is Real Time?

It is determinism (being able to respond to a
stimulus before a deadline) with a given
load.

It is NOT fast response time.

The specific real time application deadlines
determine how short the maximum response
time must be to deliver real time behavior.

Some examples of deadlines are one second,
one millisecond, or five microseconds.

 What is Real Time?

It is NOT fast response time.

But in MY world -- embedded consumer
electronics -- the processors are as slow
as possible, to reduce the cost of the product
and to minimize power consumption.

 What is Real Time?

It is NOT fast response time.

But in MY world -- embedded consumer
electronics -- the processors are as slow
as possible, to reduce the cost of the product
and to minimize power consumption.

Thus achieving fast enough response time
is a challenge.

 What is Real Time?

It is NOT fast response time.

So a common strategy to avoid failure of
real time products is to focus on decreasing
response time (by reducing overhead and
latency).

 What is Real Time Linux?

For this talk:

 kernel.org Linux + RT preempt patches

It is not:

 Xenomai
 RTAI
 Adeos

 These are interesting, but not enough time to discuss them.

 OS Design Trade offs
Batch
 - maximize throughput
 - sacrifice responsiveness

 OS Design Trade offs
Batch
 - maximize throughput
 - sacrifice responsiveness

OLTP
 - maximize transactions per second
 - minimize average response time
 - sacrifice determinism

 OS Design Trade offs
Batch
 - maximize throughput
 - sacrifice responsiveness, determinism

OLTP
 - maximize transactions per second
 - minimize average response time
 - sacrifice throughput, determinism

Real Time
 - maximize determinism
 - minimize worst case latency
 - sacrifice throughput, average response time,
 minimum latency

Red Hat Enterprise Linux
Red Hat MRG tuned

 source: Red Hat

Messaging Workload

 OS Design Trade offs

Contradictory attributes can not be achieved.

Unrealistic expectations will lead to failure.

section 2

 Process

 Related Issues

Classic Method of RT Design

Design to be RT

Classic Method of RT Design

Design to be RT

Resource budget (eg cpu scheduling) strictly
allocated

Classic Method of RT Design

Design to be RT

Resource budget (eg cpu scheduling) strictly
allocated

Precise analysis and review of algorithm
and code

Classic Method of RT Design

In theory, it is “easy” to follow a process or
formula to guarantee that the RT system
will meet the design goals.

Ad hoc Method of RT Design

Modify existing application to become RT
 - Use RT priorities
 - Preallocate resources and lock in place
 - Remove obvious blocking and contention

Ad hoc Method of RT Design

Modify existing application to become RT
 - Use RT priorities
 - Preallocate resources and lock in place
 - Remove obvious blocking and contention

Iterative process to fix problems
 - Detect existence of problem
 - Instrument and measure
 - Debug cause
 - Fix cause
 - Repeat

Ad hoc Method of RT Design

There is not a process or
formula to guarantee that the RT system
will meet the design goals.

Classic Method of RT Design

 Add things that create solutions.

Classic Method of RT Design

 Add things that create solutions.

Ad hoc Method of RT Design

 Remove things that cause problems.

Classic Method of RT Design

 Add things that create solutions.

Ad hoc Method of RT Design

 Remove things that cause problems.

It is much harder to prove that nothing bad
remains to remove, than to prove that you
have only added good.

section 3

 HARDWARE

 Related Issues

 Hardware

Clock Speeds

Most of the mainline development seems to
be focused on systems with high clock rates
(>= 1 Ghz).

 Hardware

Clock Speeds

Most of the mainline development seems to
be focused on systems with high clock rates
(>= 1 Ghz).

If your target hardware has low clock rates
(eg 100 – 500 Mhz), you may need to modify
the mainline kernel to achieve acceptable
latencies. For example, the scheduler.

 Hardware

Clock Speeds

Most of the mainline development seems to
be focused on systems with high clock rates
(>= 1 Ghz).

If your target hardware has low clock rates
(eg 100 – 500 Mhz), you may need to modify
the mainline kernel to achieve acceptable
latencies. For example, the scheduler.

But real-time is not fast, it is determinism.

 Non-deterministic Hardware

Memory Cache

TLB

Memory Bus Contention

BIOS with SMI handlers enabled

Input / Output

External Interrupt Prioritization

SMP

Virtualization

 Non-deterministic Hardware

Memory Cache & TLB

 These technologies have been present in
 successful RT systems for decades.

 Non-deterministic Hardware

Memory Cache & TLB

 These technologies have been present in
 successful RT systems for decades.

 - If the statistical behavior of the system
 is good enough.

 Non-deterministic Hardware

Memory Cache & TLB

 These technologies have been present in
 successful RT systems for decades.

 - If the hardware can be made deterministic
 for the real time application.

 Non-deterministic Hardware

Memory Cache & TLB

 These technologies have been present in
 successful RT systems for decades.

 - If the hardware can be made deterministic
 for the real time application:

 + Lock application in TLB and cache
 + Dedicated high speed memory system
 + uclinux (for systems without an MMU)

 Non-deterministic Hardware

Memory Cache & TLB

 These technologies have been present in
 successful RT systems for decades.

 - If RT application must be locked in TLB or
 cache then vanilla RT Linux is not the solution.

 Non-deterministic Hardware

Memory Cache & TLB

 These technologies have been present in
 successful RT systems for decades.

 - If RT application must be locked in TLB or
 cache then vanilla RT Linux is not the solution.

 - It could be possible to modify the kernel to
 provide these features (architecture specific).

 Non-deterministic Hardware

BIOS with SMI handlers enabled

 Steals the CPU from the Linux kernel

SMI == System Management Interrupt

 Non-deterministic Hardware

BIOS with SMI handlers enabled

 Steals the CPU from the Linux kernel

 Examples of SMI activities:

 - thermal management
 - memory errors
 - legacy ISA devices
 - USB (ps2 emulation)

 Non-deterministic Hardware

BIOS with SMI handlers enabled

 How to detect:

 lkml thread: [RT] [RFC] simple SMI detector
 Jon Masters
 1/24/09 – 1/27/09

 Non-deterministic Hardware

BIOS with SMI handlers enabled

 How to detect:

 lkml: [PATCH 0/1] Hardware Latency Detector
 (formerly SMI detector)
 Jon Masters
 Thu, 11 Jun 2009 00:58:29 -0400

 Not yet in kernel.org as of 2.6.34-rc3

 Non-deterministic Hardware

BIOS with SMI handlers enabled

 How to detect:

 lkml: [PATCH 2.6.34-rc3] A nonintrusive
 SMI sniffer for x86 (resend)
 Joe Korty
 Tue, 6 Apr 2010 13:06:05 -0700

 Non-deterministic Hardware

BIOS with SMI handlers enabled

 Possible Fix:

 - Do not use the hardware that requires
 the SMI handlers (eg USB ps2 emulation)

 Non-deterministic Hardware

BIOS with SMI handlers enabled

 Possible Fix:

 - Do not use the hardware that requires
 the SMI handlers (eg USB ps2 emulation)

 - Use a system that does not have BIOS
 with SMI handlers.

 Non-deterministic Hardware

BIOS with SMI handlers enabled

 Possible Fix:

 - Work with BIOS and system vendors to
 replace SMI handlers in BIOS with custom
 kernel or user space equivalent.

 Non-deterministic Hardware

BIOS with SMI handlers enabled

 Possible Fix:

 - Work with BIOS and system vendors to
 replace SMI handlers in BIOS with custom
 kernel or user space equivalent.

 Example:
 How can I improve event response times
 (latency) for my realtime kernel on
 Intel-based HP ProLiant G6 systems?
 http://kbase.redhat.com/faq/docs/DOC-19297

 Non-deterministic Hardware

BIOS with SMI handlers enabled

 Example Fix:

 lkml: [RFC][Patch] IBM Real-Time
 "SMI Free" mode driver
 Keith Mannthey
 02/10/09 16:37

 Not yet accepted as of 2.6.34-rc3

 Non-deterministic Hardware

BIOS with SMI handlers enabled

 Example Fix:

 lkml: [RFC][Patch] IBM Real-Time
 "SMI Free" mode driver

 “This driver supports the Real-Time Linux
 (RTL) BIOS feature. The RTL feature allows
 non-fatal System Management Interrupts
 (SMIs) to be disabled on supported IBM
 platforms”

 Non-deterministic Hardware

BIOS with SMI handlers enabled

 Example Fix:

 http://linuxplumbersconf.org/2009/slides/
 Keith-Mannthey-SMI-plumers-2009.pdf

 Current Support
 - various IBM systems
 - Redhat MRG
 - SUSE SLERT

 Non-deterministic Hardware

Input / Output

For example:

 Networking

 USB

 Video

 sdhci Secure Digital Host Controller Interface

 i2c

 media (disk, flash device)

 Input / Output

Drivers may be non-deterministic,

 or may just create large latencies.

 Input / Output

 Assume that all drivers are

 NOT

 real time safe

 Input / Output

 Assume that all drivers are

 NOT

 real time safe

Until you have verified otherwise

 Input / Output

 Assume that all drivers are

 NOT

 real time safe

Until you have verified otherwise

Most drivers are not created with a real time goal

 USB

Linux example: USB2Serial

lkml: “Real time USB2Serial devices and behaivor”
Mark Gross
2008-03-26 15:25:59 GMT

“I'm just starting to look into the behavior now
but has anyone looked at the RT'ness of
USB2Serial + USB stack yet?”

 USB

Linux example: USB2Serial

“USB is not 'deterministic', and these cheap
USB to serial devices introduce a very big lag
that also is not deterministic.”

“The generic usb serial driver is KNOWN TO
BE A VERY SLOW DRIVER!
...
The code was not designed to be fast, only
get the job done.”

 USB

Linux example: USB2Serial

“I'd think that in a controlled environment (fixed
set of USB connections) USB should be able to
meet fairly chosen "real time" latency ceilings.

The stack probably needs a few semantic
updates to make it happen -- e.g. URB
Completions are issued in_irq() -- but it
shouldn't be insurmountable.”

 USB

From the USB 2.0 and 3.0 specifications for
an Interrupt Transfer:

 - The host controller polls for “interrupts”

 - The minimum poll period is 125 μs

 - If an error is detected the transfer is
 attempted one period later

 USB

From the USB 2.0 and 3.0 specifications for
an Interrupt Transfer:

 - The host controller polls for “interrupts”

 - The minimum poll period is 125 μs

 - If an error is detected the transfer is
 attempted one period later

==> Hardware latency could be 125 μs (no error)
 Hardware latency could be 250 μs (one error)
 etc...

 USB

From the USB 2.0 and 3.0 specifications for
an Interrupt Transfer:

 - The host controller polls for “interrupts”

 - The minimum poll period is 125 μs

 - If an error is detected the transfer is
 attempted one period later

But real-time is not fast, it is determinism.

 So, is USB fast or deterministic?

 Video

“VGA text console causes very large latencies,
up to more than hundreds of microseconds.”

source:
 http://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application

 Video

“VGA text console causes very large latencies,
up to more than hundreds of microseconds.”

source:
 http://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application

 This is a good example of how a driver can
 impact a real time task, even if the real time
 task is not directly using the driver.

 sdhci

Secure Digital Host Controller Interface

 lkml: sdhci can turn off irq up to 200 ms
 Matthieu CASTET
 Wed, 1 Jul 2009 15:15:48 +0200

 Non-deterministic Hardware

Input / Output

 Possible Fix:

 Defer I/O to a non-realtime thread

 Non-deterministic Hardware

External Interrupt is highest priority

 All external interrupts have better priority than
 all real time processes.

 Non-deterministic Hardware

External Interrupt is highest priority

 All external interrupts have better priority than
 all real time processes.

 Uncontrolled external events are capable of
 preempting real time processes for an
 infinite length of time.

 Non-deterministic Hardware

External Interrupt is highest priority

 Possible Fix:

 - Control the external environment

 - Implement polled event handling (eg NAPI)
 for problem drivers

 - Mask problem interrupts while RT processes
 are runnable (theoretical, not implemented)

 Non-deterministic Hardware

SMP

 Current state in real time Linux:

 - Not brand new, but still room for increased
 experience and improvement

 - Not yet predominate platform for real time,
 but increasingly common

 Non-deterministic Hardware

SMP

 Current state in real time Linux:

 - Marketed by commercial vendors, examples:

 MontaVista Software
 http://www.mvista.com/product_detail_cge.php

 Red Hat Enterprise MRG
 http://www.redhat.com/mrg/

 SUSE Linux Enterprise Real Time
 http://www.novell.com/industries/financial/realtime/

 Non-deterministic Hardware

SMP

 Mainstream developers are aware of SMP.

 The real time scheduler supports SMP.

 Non-deterministic Hardware

SMP

 Linux SMP scheduler research exists,
 for example “ARTiS, Asymetric Real-Time
 Scheduling”:

 http://www.lifl.fr/west/artis
 https://gna.org/projects/artis

 Non-deterministic Hardware

SMP

 My opinion:

 Examples of SMP Linux real time are
 available, but its relative youth suggests
 that it should be approached with caution.

 Non-deterministic Hardware

SMP

 Example area of concern

 Even if a cpu is dedicated to a real time
 process, activity on other cpus can impact it.

 For instance, for_each_cpu(,,wait)
 impacts both sender and receiver cpu

 Non-deterministic Hardware

SMP

int on_each_cpu(,, int wait)
{
 preempt_disable();
 ret = smp_call_function(func, info, wait);
 local_irq_save(flags);
 func(info);
 local_irq_restore(flags);
 preempt_enable();

 Non-deterministic Hardware

SMP

void smp_call_function_many(,,, bool wait)
{

 /* Send a message to all CPUs in the map */
 arch_send_call_function_ipi_mask(...);

 /* Optionally wait for the CPUs to complete */
 if (wait)
 csd_lock_wait(&data->csd);

 Non-deterministic Hardware

SMP

 Example area of concern

 The existing scheduler algorithms might be
 adequate, but do not be surprised if your
 real time workload is not handled well by
 default.

 Non-deterministic Hardware

SMP

 Possible Fix:

 - Adjust scheduler tunables.

 Non-deterministic Hardware

SMP

 Possible Fix:

 - Help improve the mainline and RT preempt
 scheduler (test, report problems, implement
 fixes).

 Non-deterministic Hardware

SMP

 Possible Fix:

 - Reduce the scheduler overhead

 + pin processes to cpu (or other
 workload partitioning)

 + simplify the scheduler to remove
 overhead and latency

 Non-deterministic Hardware

SMP

 Possible Fix:

 - Isolate cpu to reduce or eliminate impact
 from other cpus

 Non-deterministic Hardware

SMP

 Possible Fix:

 - Isolate cpu to reduce or eliminate impact
 from other cpus

 One example, that led to a long discussion
 on improving the current scheduler:

 linux-rt-users: “RFC: THE OFFLINE SCHEDULER”
 raz ben yehuda
 Sun, 23 Aug 2009 02:27:51 +0300

 Non-deterministic Hardware

Virtualization

 Virtualization

Guest Operating System executes in a
“Virtual Machine”.

 Virtualization

Example Issue 1

Additional overhead of meta operating system
(eg hypervisor) mediating between guest
operating systems (GOS).

Example of scheduler overhead
(no virtualization)

 exception

Task 1

OS scheduler

OS scheduler

Task 2

Example of scheduler overhead
(with virtualization)

 exception

Task 1

OS scheduler

OS scheduler

Task 2MOS scheduler

GOS1 scheduler

Task 1

MOS scheduler

GOS2 scheduler

Task 2

 Virtualization

Example Issue 1

Additional overhead of hypervisor

In this specific example:

 - second scheduling layer

 - additional context switches between
 hypervisor and guest OS's

 Virtualization

Example Issue 1

Additional overhead of hypervisor

But real-time is not fast, it is determinism.

 Virtualization

Example Issue 1

Additional overhead of hypervisor

But real-time is not fast, it is determinism.

So if the deadlines are met, the extra overhead
is not a problem.

 Virtualization

Example Issue 2

Guest Operating System can not provide
resource guarantees to its real-time tasks,
unless the Guest Operating System is given
resource guarantees by the meta operating
system.

 Virtualization
 and
 Real Time

Frank's viewpoint:

 On this path lies insanity.

 Virtualization
 and
 Real Time

Frank's viewpoint:

 On this path lies insanity.

But there are people who are braver than Frank.

 Braver Than Frank, 1

lkml: [ANNOUNCE] AlacrityVM hypervisor project
Gregory Haskins
Mon, 03 Aug 2009 09:53:40 -0400

We are pleased to announce the formation of the AlacrityVM project and
the availability of v0.1 of the code. AlacrityVM is a hypervisor based
on KVM targeted specifically at performance sensitive workloads such as
HPC and real-time.

You can find more information on the AlacrityVM wiki, available here:

http://developer.novell.com/wiki/index.php/AlacrityVM

Anyone who may be interested in further developments surrounding this
project is encouraged to subscribe to one or both of the following lists:

https://lists.sourceforge.net/lists/listinfo/alacrityvm-users
https://lists.sourceforge.net/lists/listinfo/alacrityvm-devel

 Braver Than Frank, 1

http://lwn.net/Articles/345296/

 “... virtualization ... tends to suffer from
 performance problems, particularly I/O
 performance.”

 “By shortening the I/O path for guests,
 AlacrityVM seeks to provide I/O performance
 near that of 'bare metal' hardware.”

 (highly edited – please see original source)

http://lwn.net/Articles/345296/

 Braver Than Frank, 1

http://developer.novell.com/wiki/index.php/AlacrityVM

 “AlacrityVM is a hypervisor ... which aims to
 serve a high-performance niche, such as ...
 HPC and Real-Time workloads in the
 Data-Center.”

 “It achieves this by utilizing a ...
 high performance IO fabric”

 (highly edited – please see original source)

http://developer.novell.com/wiki/index.php/AlacrityVM

 Braver Than Frank, 1

Example of results

source (14 August 2009):
http://developer.novell.com/wiki/index.php/AlacrityVM

http://developer.novell.com/wiki/index.php/AlacrityVM

 Braver Than Frank, 1

Example of results

source (14 August 2009):
http://developer.novell.com/wiki/index.php/AlacrityVM

http://developer.novell.com/wiki/index.php/AlacrityVM

 Braver Than Frank, 1

Example of results

 Note that the graphs on the previous two
 slides are now ancient history and do not
 reflect current performance of venet and
 virtio-u.

 Braver Than Frank, 2

http://www.osadl.org/Abstract-20-Towards-Linux-as-a-Real-Tim.rtlws11-abstract20.0.html

Eleventh Real-Time Linux Workshop on September 28 to 30,
in Dresden, Germany

Towards Linux as a Real-Time Hypervisor
Jan Kiszka, Siemens AG, Corporate Technology

In this paper, we will present our research work on improving the
real-time qualities the Linux hypervisor KVM can provide to its
guests. We will specifically focus on a new paravirtualized
scheduling interface. It allows guests to influence the scheduling
parameters of their virtual CPUs (VCPU) on the host. This, in turn,
enables the Linux host to account for real-time load inside guest
systems by prioritizing VCPUs properly so that batch load both in
other guests as well as on the host itself does not unacceptably
interfere.

http://www.osadl.org/

 Braver Than Frank, 2

http://www.osadl.org/Abstract-20-Towards-Linux-as-a-Real-Tim.rtlws11-abstract20.0.html

“... research work on improving the real-time
qualities the Linux hypervisor KVM can provide
to its guests.”

“... a new paravirtualized scheduling interface ...
allows guests to influence the scheduling
parameters of their virtual CPUs (VCPU) on the
host.”

“This ... enables the ... host to account for
real-time load inside guest systems ...”

http://www.osadl.org/

 Hyperthreading

Similar to SMP and Virtualization

 ...but different!

 Hyperthreading

Similar to SMP and Virtualization

 ...but different!

Do not underestimate the negative impacts
on real-time performance.

section 4

 Some Random Thoughts

 Not All Kernels Are Equal

Some versions of the RT Preempt Patches
are less robust.

 Not All Kernels Are Equal

Some versions of the RT Preempt Patches
are less robust.

 - Some have more radical restructuring
 - Some are more experimental
 - Recent are based on -tip and pull in origin.patch
 - Some have less developer attention
 - Some pull previous RT preempt forward
 to newer base kernel without a lot of validation
 - Some have more focus on stabilization
 - Some have support for more architectures

 Not All Kernels Are Equal

Possible Fix

 Use a vendor supported and tested
 distribution, such as

 MontaVista Software
 Red Hat
 SUSE
 Wind River

 Not All Kernels Are Equal

Possible Fix

 Use a stable RT version

 eg. OSADL stable rt-linux recomendation

 http://www.osadl.org/Realtime-Linux.projects-realtime-linux.0.html

 (stable on April 9, 2010 is 2.6.31.12-rt21)

http://www.osadl.org/Realtime-Linux.projects-realtime-linux.0.html

 Not All Kernels Are Equal

Possible Fix

 Use the RT Preempt Patches on top of a
 kernel.org tree and schedule sufficient time
 to tune and stabilize the RT Preempt
 Patches for your target.

 (And submit improvements back to the
 RT Preempt project.)

section 5

 Kernel Features

 Resource Allocation

Allocate before beginning real time operation.
For example:

 - Create processes.

 - Allocate memory.

 - Lock memory.

 printk()

On PREEMPT_RT kernel printk() may sleep.

kernel/printk.c:

/*
 * On PREEMPT_RT kernels __wake_up may sleep, so wake syslogd
 * up only if we are in a preemptible section. We normally dont
 * printk from non-preemptible sections so this is for the emergency
 * case only.
 */

#ifdef CONFIG_PREEMPT_RT
 if (!in_atomic() && !irqs_disabled())
#endif

 if (wake_klogd)
 wake_up_klogd();

 printk()

On PREEMPT_RT kernel printk() may sleep.

Do not call it from real time context.

 No longer true as of commit b845b517
 Fri Aug 8 21:47:09 2008 +0200
 (2.6.28)

 wake_up_klogd() no longer calls
 wake_up_interruptible()

 Kernel Thread Priorities

Default kernel thread priorities are not likely
to be optimal.

 Kernel Thread Priorities

Default kernel thread priorities are not likely
to be optimal.

Determine proper priorities for:

 - IRQ handler threads

 - Softirq threads

 - real time application kernel threads

 - real time application user space threads

 Power Management

Frequency Scaling

 Latency while changing frequency.

 Unexpectedly executing slower.

 Power Management

CPU Sleep Latency

 The wake up latency from cpu sleep increases
 for deeper levels of sleep.

 drivers/cpuidle/* attempts to balance power
 saving and latency.

 Power Management

CPU Sleep Latency

 Implementation of balancing power saving
 and latency is nicely documented by the
 comment at the top of
 drivers/cpuidle/governors/menu.c

 as of commit 69d25870 2009-09-21 or
 see http://lwn.net/Articles/352180/ for an
 earlier version.

 Power Management

For optimal real time latency, disable power
management.

 Power Management

Frequency Scaling, Sleep Mode

 CONFIG_APM
 CONFIG_ACPI_PROCESSOR
 CONFIG_CPU_FREQ
 CONFIG_CPU_IDLE

Documentation/cpuidle/*
Documentation/cpu-freq/*

 Kernel Configuration Options

Many config options can strongly affect latencies

 CONFIG_APM
 CONFIG_ACPI_PROCESSOR
 CONFIG_CPU_FREQ
 CONFIG_CPU_IDLE

 CONFIG_NO_HZ
 Desirable for cpu isolation, but increases
 latency.

 ... and many more – inspect your config!

 RT Group Scheduling

Default:

 Limit cpu use of real time processes to 95%

 RT Group Scheduling

Default:

 Limit cpu use of real time processes to 95%

Argument for usage:

 Prevents runaway RT process from locking up
 the system.

 RT Group Scheduling

Default:

 Limit cpu use of real time processes to 95%

Argument for usage:

 Prevents runaway RT process from locking up
 the system.

Disabling:

 echo -1 > /proc/sys/kernel/sched_rt_runtime_us
 (Documentation/scheduler/sched-rt-group.txt)

 RT Group Scheduling

Issues:

 - Scheduler overhead

 RT Group Scheduling

Issues:

 - Scheduler overhead

 - Group sched lock contention

 RT Group Scheduling

Issues:

 - Scheduler overhead

 - Group sched lock contention

 - Throttled cpu will attempt to borrow runtime
 from other cpus.

 A process that can not migrate may have
 an actual cpu limit that is lower than 95%
 when other cpus borrow runtime.

 RT Group Scheduling

Issues:

 - Scheduler overhead

 - Group sched lock contention

 - Throttled cpu will attempt to borrow runtime
 from other cpus.

 - Reduce headroom by 5%.
 Why eliminate that safety margin?

 stop_machine()

Freezes all cpus, except one which executes
a specified function.

Interrupts are disabled while the cpus are
frozen. Interrupt latency can become
very large.

 stop_machine()

Users (things to avoid during real time operation):

 module install and remove

 cpu hotplug

 memory hotplug

 ftrace

 hwlat_detector

 xen suspend

 highmem

#ifdef CONFIG_PREEMPT_RT
define kmap_atomic(page, type) \
 ({ pagefault_disable(); kmap(page); })

 - Possible IPI
 - Possible sleep

Conclusion: just don't use it...

 Recap

- Real time is deterministic, not fast. But
 typically tune to be fast.

- Hardware issues (memory system, SMI, I/O,
 external interrupts, SMP, virtualization, other).

- Kernel version

- Kernel specific (priorities, config options,
 power management, scheduler,
 stop_machine(), other)

 QUESTIONS?

Getting a Copy of the Slides

1) frank.rowand@am.sony.com

2) leave a business card with me

