
YAML and Devicetree
October 21, 2017/0 Comments/in Technical /by Pantelis Antoniou

Introduction
This document attempts to explain the rationale behind using a YAML based data model instead of the standard
devicetree source (DTS). It assumes a working knowledge of devicetree, so readers are expected to have perused the
devicetree specification located here.

Devicetree and its underlying concepts
While device tree deals with describing hardware devices, at its core it is a method of declaring a hierarchical structure
as defined in the Devicetree Specification:

“A devicetree is a tree data structure with nodes that describe the devices in a system. Each node has property/value
pairs that describe the characteristics of the device being represented. Each node has exactly one parent except for the
root node, which has no parent.”

This structure is familiar to anyone with a passing knowledge of programming languages with rich data structures:
nodes can be hashes keyed by their name, properties can be either scalars or sequences of scalars, and labels of nodes
and phandles can be references/pointers.

https://www.konsulko.com/yaml-and-device-tree/
https://devicetree.org/downloads/devicetree-specification-v0.1-20160524.pdf
https://www.konsulko.com/author/panto/
https://www.konsulko.com/category/technical/
https://www.konsulko.com/yaml-and-device-tree/#respond
https://www.konsulko.com/
https://www.konsulko.com/wp-content/uploads/2017/10/device-tree-vertical-logo-1.jpg

Unfortunately, device tree is not orthogonal enough for this mapping to work. Namely, properties are irregular in the
following ways:

1. Boolean values cannot be part of a sequence, since a named property is defined as false if it doesn’t exist in a
node and as true otherwise.

2. Phandles are encoded as integer (cell) scalar values and are allowed in any property that contains cell values.

3. While properties are defined either as a single value or a sequence of values, their type information is thrown
away. The importance of this is that the property accessors must have an out-of-band way to be informed of the
type(s) used in the property, i.e. property type information is not discoverable.

Lifecycle of a Devicetree.
The purpose of the device tree is (or at least was until recently) to be provided to an operating system at boot time. This
was done by the following steps.

1. Device Tree source files (DTS) are processed by a compiler to generate an in-memory tree structure. This
structure is dynamically created at compile time by editing operations of the the compile tree sources which
are:

• Device tree sources are usually now pre-processed using the C proprocessor, but the built-in source
include directive is still supported. Note that mixing them is permitted although it can lead to the
unexpected behaviour of the base source file being preprocessed while the included one is not.

• Declaration of a device node results in the creation of new in-memory device node if it doesn’t exist, or
reusing it if it does.

• Declaration of a property results in the creation of a new in-memory property containing the new
property values if it doesn’t exist or replacing it if it does.

• Node and property removal directives remove nodes and properties of the runtime tree structure as
appropriate.

• Node labels and references to them in properties are tracked. Note that references are the only scalar
values that are tracked in the in-memory property data structure.

• phandle references editing operations of the form ‘&label’ & ‘&{/path}’ are processed. These reference
nodes with labels declared earlier in the main tree source. This form is typically used when compiling a
device tree comprised of a main source file and a number of included files because it lends well to the a
pattern of incremental change.

• The special /memreserve/ directive is parsed and processed.
2. The in-memory tree structure is ‘flattened’, i.e. it is serialized to create a device tree blob (DTB). It is in this

stage that the symbolic references to node labels are resolved to integer/cell phandle values, with references to
them being replaced by a cell value of the node’s phandle. Special ‘automatic’ properties (named phandle)
containing the assigned phandle values are created for nodes that are referenced.

3. This device tree blob file is placed in the applicable device and the bootloader is informed about how to
retrieve it. This may be done by placing it in non-volatile storage at a specific byte offset, or being put in a
boot-loader accesible filesystem with a specific name, etc.

4. The bootloader starts, retrieves the device tree blob, and either passes it unchanged to the operating system or
performs minor modification (i.e. altering the boot command line in the chosen node or enabling/disabling
devices by modifying the status properties of some nodes). The bootloader typically does not create an in-
memory tree structure at this step, it operates on the DTB blob level.

5. The operating system starts and ‘unflattens’ the device tree blob which the bootloader has passed to it using the
agreed upon architecture specific interface. The in-memory tree structure created is the same as the one created
at the end of the compilation step, but with any changes that the boot-loader performed. The kernel at this point
starts using the in-memory data structure, and it is referred to as the live-tree going forward. Note that

while node phandles are discovered and tracked by the ‘phandle’ properties, their references cannot be deduced
at this time.

6. The operating system (including any device drivers) scans the live-tree and performs initialization and
configuration of the hardware described there. Note that the operating system must have complete knowledge
of the nodes and properties of an active node. This is evident by the use of access methods that include type
information (e.g. of_property_read_u32()), node references needing to be explicitly discovered by converting
cell phandle value to a reference to a node, etc. Unfortunately, this is very error-prone since the type
information has been discarded. There is no way to disallow access to a property using a different method than
what was declared in the original source file.

The steps above are applicable to the simple case of a single platform, and up to a few years ago used to be the norm.
In contemporary systems the situation is more complex for the following reasons:

1. A common requirement is for a single image to be used for a number of different (but sufficiently similar)
platforms. The number of stored DTBs would match the number of supported platforms, even if their changes
are minimal.

2. Hardware is no longer static. The proliferation of FPGAs and add-on expansion boards requires runtime device
tree modification using device tree overlays. Those overlays are extremely similar to the way in-memory tree
modification is performed at compile time but it is different in subtle ways.

3. The device tree lifecycle expects perfect coordination across all the steps without the possibility of errors. This
is troublesome in practice since every step in the sequence is part of a different project (compiler, bootloader,
operating system). Errors can easily creep in and are usually not detected until the last step of the sequence, the
operating system boot process. In case of an error, the result is usually a hung system without any indication
what might have gone wrong.

YAML as a source format alternative
YAML is a human-readable data serialization language which is expressive enough to cover all DTS features. Simple
YAML files are just key-value pairs that are very easy to parse, even without using a formal YAML parser. YAML
streams are containing documents separated with a — marker. This model is a good fit for device tree since one may
simply append a few lines of text to a given YAML stream to modify it.

YAML parsers are very mature, as YAML was first released in 2001. It is currently in wide-spread use and schema
validation tools are available and common. Additionally, YAML support is available for many major programming
languages.

Mapping of DTS constructs to YAML
The mapping of DTS constructs to YAML is relatively straightforward since they are both key-value declaration
languages.

• Comments in YAML are done using the # character instead of the C-like comments that DTS uses.

/*

 dts comment */

#

 YAML comment

• DTS is a free form language using braces for denoting nest level while YAML is indentation sensitive in
standard YAML encoding. Fortunately YAML is a superset of JSON which can be used as a valid free form.

node {

 property
 = "foo";

}

node:

 property: "foo"

{

 "node": { "property": "foo" } }

• There is no explict root in YAML encoding. Top level nodes & properties are taken to be located in the root.

/ {

 property;

 subnode
 {

 another-property;

 };

};

property: true

 subnode:

 another-property: true

• Sequences in YAML may be denoted either by a single line starting with a hyphen ‘-‘, or bracketed JSON form.
The following are equivalent.

property

 = "a", "b", "c";

property:

 -
 "a"

 -
 "b"

 - "c"

property:

 ["a", "b", "c"]

• Values that may be evaluated as numeric scalars are used as cells.

property

 = <10>;

property:

 10

Note that this includes integer expressions as well

property

 = <(5 + 5)>;

property:

 5+5

• String property values are enclosed in double quotes, although this is optional if the value cannot be expressed
as a numeric scalar.

property

 = "string";

property:

 "string"

• Boolean values are encoded as true and false. This is not implicit like in DTS.

property;

property:

 true

Note that it is possible to declare a property as false but you will get a warning about it being removed when
generating the DTB.

property:

 false

• It is possible to explictly declare the type of a scalar using the standard ‘!’ method of YAML. For instance this
is how byte properties are supported.

property

 = [0124AB];

property:

 !int8 [0x01, 0x24, 0xab]

• Similarly the /bits/ directive is supported by explicit tagging.

property

 = /bits/ 64 <100>;

property:

 !int64 100

• Labels are named anchors and are referenced by a ‘*’. Note that references are typed as such in YAML, they
are transformed to phandle cells only on DTB generation.

label: node {

 property;

};

ref = <&label>;

&label {

 foo;

};

node: &label

 property:
 true

ref: *label

*label:

 foo: true

• The delete node and properties directives are replaced with assignment to null/~. It works the same for both
properties and nodes.

/ {

 node
 {

 property;

 };

};

/ {

 /delete-node/
 node;

};

node:

 property:
 true

node:

 ~

• There is no source /include/ directive in YAML. It is expected that thet C preprocessor will be used as is the
norm with DTS.

• Similarly there is no /include-bin/ directive, YAML can relatively easily include binary data as base64 string
properties.

• To easily support pre-processor macros from a DTS environment, scalars that are detected to be space
separated integer expressions are transparently converted to scalar integer sequences.

#define MACRO(x, y) x y
 (x + y)

property

 = ;

#define MACRO(x, y) x y
 (x + y)

property:

 MACRO(10, 5)

Will result in

property:

 [10, 5, 15]

The YAML advantage
Radical changes are seldom worth it without bringing in significant benefits. Switching to YAML instead of DTS is
indeed a radical change, but it does carry benefits, namely:

1. YAML is a well known and mature technology which is supported by many programming languages and
environments.

2. YAML’s original purpose was data serialization. Therefore it is orthogonal and supports high-level language
data structures well.

3. It is suited for the description of graph structures, since it supports references and anchors.

4. With its mature parsers and tools, it easily supports the human edit and compile cycle that is now common with
device tree development. Since all property values are potentially typed, it is possible to track type information
in order to perform thorough validation and checking against device tree bindings (once the bindings are
converted to a machine readable format, preferably YAML). As well, this allows the reporting of accurate error
messages and warnings at any stage of the compilation process.

5. It is possible to generate YAML as an intermediate format with references not resolved, in a similar way that
object files are used. Those intermediate files can them be compiled/linked again to generate the final
DTB/YAML file. For example, instead of compiling into a single output file, one could generate intermediate
YAML files, similar in every way to device tree overlays, and then perform the final ‘linking’ step at either
compile time or the bootloader.

6. It is relatively easy to parse, and a resource limited parser that can be included in bootloaders or the kernel is
possible.

7. Data in YAML can easily be converted to and from other formats making it convertable to formats which
future tools may understand.

The yamldt compiler
yamldt is a YAML/DTS to DT blob generator/compiler and validator. The YAML schema is functionally equivalent
to DTS and supports all DTS features, while as a DTS compiler it is bit-exact compatible with DTC. yamldt parses a
device tree description (source) file in YAML/DTS format and outputs a device tree blob (which can be bit-exact to the
one generated from the reference dtc compiler if the -C option is used).

Validation is performed against a YAML schema that defines properties and constraints. A checker uses this schema to

generate small code fragments that are compiled to eBPF and executed for the specific validation of each DT node the
rule selects in the output tree.

Validation
As mentioned above, yamldt is capable of performing validation of DT constructs using a C-based eBPF checker.
eBPF code fragments are assembled that can perform type checking of properties and enforce arbitrary value
constraints while fully supporting inheritance.

As an example, here’s how the validation of a given fragment works using on a jedec,spi-nor node:

m25p80@0:

 compatible:
 "s25fl256s1"

 spi-max-frequency:
 76800000

 reg:
 0

 spi-tx-bus-width:
 1

 spi-rx-bus-width:
 4

 "#address-cells":
 1

 "#size-cells": 1

The binding for this is:

%YAML 1.1

jedec,spi-nor:

 version:
 1

 title:
 >

 SPI
 NOR flash: ST M25Pxx (and similar) serial flash chips

 maintainer:

 name:
 Unknown

 inherits:
 *spi-slave

 properties:

 reg:

 category:
 required

 type:
 int

 description:
 chip select address of device

 compatible:
 &jedec-spi-nor-compatible

 category:
 required

 type:
 strseq

 description:
 >

 May
 include a device-specific string consisting of the

 manufacturer
 and name of the chip. A list of supported chip

 names
 follows.

 Must
 also include "jedec,spi-nor" for any SPI NOR flash that
 can

 be
 identified by the JEDEC READ ID opcode (0x9F).

 constraint:

 |

 anystreq(v,
 "at25df321a") ||

 anystreq(v,
 "at25df641") ||

 anystreq(v,
 "at26df081a") ||

 anystreq(v,
 "mr25h256") ||

 anystreq(v,
 "mr25h10") ||

 anystreq(v,
 "mr25h40") ||

 anystreq(v,
 "mx25l4005a") ||

 anystreq(v,
 "mx25l1606e") ||

 anystreq(v,
 "mx25l6405d") ||

 anystreq(v,"mx25l12805d") ||

 anystreq(v,"mx25l25635e") ||

 anystreq(v,
 "n25q064") ||

 anystreq(v,
 "n25q128a11") ||

 anystreq(v,
 "n25q128a13") ||

 anystreq(v,
 "n25q512a") ||

 anystreq(v,
 "s25fl256s1") ||

 anystreq(v,
 "s25fl512s") ||

 anystreq(v,
 "s25sl12801") ||

 anystreq(v,
 "s25fl008k") ||

 anystreq(v,
 "s25fl064k") ||

 anystreq(v,"sst25vf040b") ||

 anystreq(v,
 "m25p40") ||

 anystreq(v,
 "m25p80") ||

 anystreq(v,
 "m25p16") ||

 anystreq(v,
 "m25p32") ||

 anystreq(v,
 "m25p64") ||

 anystreq(v,
 "m25p128") ||

 anystreq(v,
 "w25x80") ||

 anystreq(v,
 "w25x32") ||

 anystreq(v,
 "w25q32") ||

 anystreq(v,
 "w25q64") ||

 anystreq(v,
 "w25q32dw") ||

 anystreq(v,
 "w25q80bl") ||

 anystreq(v,
 "w25q128") ||

 anystreq(v,
 "w25q256")

 spi-max-frequency:

 category:
 required

 type:
 int

 description:
 Maximum frequency of the SPI bus the chip can operate at

 constraint:
 |

 v
 > 0 && v < 100000000

 m25p,fast-read:

 category:
 optional

 type:
 bool

 description:
 >

 Use
 the "fast read" opcode to read data from the chip instead

 of
 the usual "read" opcode. This opcode is not supported by

 all
 chips and support for it can not be detected at runtime.

 Refer
 to your chips' datasheet to check if this is supported

 by
 your chip.

 example:

 dts:
 |

 flash:
 m25p80@0 {

 #address-cells
 = <1>;

 #size-cells
 = <1>;

 compatible
 = "spansion,m25p80", "jedec,spi-nor";

 reg

 = <0>;

 spi-max-frequency = <40000000>;

 m25p,fast-read;

 };

 yaml:
 |

 m25p80@0:
 &flash

 "#address-cells": 1

 "#size-cells":
 1

 compatible:
 ["spansion,m25p80", "jedec,spi-nor"]

 reg:
 0;

 spi-max-frequency: 40000000

 m25p,fast-read: true

Note the constraint rule matches on any compatible string in the given list. This binding inherits from spi-slave as
indicated by the line: inherits: *spi-slave

*spi-slave is standard YAML reference notation which points to the spi-slave binding, pasted here for
convenience:

%YAML 1.1

spi-slave: &spi-slave

 version:
 1

 title:
 SPI Slave Devices

 maintainer:

 name:
 Mark Brown <broonie@kernel.org>

 inherits:
 *device-compatible

 class:
 spi-slave

 virtual:
 true

 description:
 >

 SPI
 (Serial Peripheral Interface) slave bus devices are children of

 a
 SPI master bus device.

 #
 constraint: |+

 #
 class_of(parent(n), "spi")

 properties:

 reg:

 category:
 required

 type:
 int

 description:
 chip select address of device

 compatible:

 category:
 required

 type:
 strseq

 description:
 compatible strings

 spi-max-frequency:

 category:
 required

 type:
 int

 description:
 Maximum SPI clocking speed of device in Hz

 spi-cpol:

 category:
 optional

 type:
 bool

 description:
 >

 Boolean
 property indicating device requires

 inverse
 clock polarity (CPOL) mode

 spi-cpha:

 category:
 optional

 type:
 bool

 description:
 >

 Boolean
 property indicating device requires

 shifted
 clock phase (CPHA) mode

 spi-cs-high:

 category:
 optional

 type:
 bool

 description:
 >

 Boolean
 property indicating device requires

 chip
 select active high

 spi-3wire:

 category:
 optional

 type:
 bool

 description:
 >

 Boolean
 property indicating device requires

 3-wire
 mode.

 spi-lsb-first:

 category:
 optional

 type:
 bool

 description:
 >

 Boolean
 property indicating device requires

 LSB
 first mode.

 spi-tx-bus-width:

 category:
 optional

 type:
 int

 constraint:
 v == 1 || v == 2 || v == 4

 description:
 >

 The
 bus width(number of data wires) that

 used
 for MOSI. Defaults to 1 if not present.

 spi-rx-bus-width:

 category:
 optional

 type:
 int

 constraint:
 v == 1 || v == 2 || v == 4

 description:
 >

 The
 bus width(number of data wires) that

 used
 for MISO. Defaults to 1 if not present.

 notes:
 >

 Some

 SPI controllers and devices support Dual and Quad SPI transfer
 mode.

 It
 allows data in the SPI system to be transferred in 2 wires(DUAL) or

 4
 wires(QUAD).

 Now
 the value that spi-tx-bus-width and spi-rx-bus-width can receive is

 only
 1(SINGLE), 2(DUAL) and 4(QUAD). Dual/Quad mode is not allowed when

 3-wire
 mode is used.

 If
 a gpio chipselect is used for the SPI slave the gpio number will be

 passed
 via the SPI master node cs-gpios property.

 example:

 dts:
 |

 spi@f00
 {

 ethernet-switch@0 {

 compatible
 = "micrel,ks8995m";

 spi-max-frequency = <1000000>;

 reg
 = <0>;

 };

 codec@1
 {

 compatible
 = "ti,tlv320aic26";

 spi-max-frequency = <100000>;

 reg
 = <1>;

 };

 };

 yaml:
 |

 spi@f00:

 ethernet-switch@0:

 compatible:
 "micrel,ks8995m"

 spi-max-frequency: 1000000

 reg:
 0

 codec@1:

 compatible:
 "ti,tlv320aic26"

 spi-max-frequency: 100000

 reg: 1

Note the &spi-slave anchor, this is what it is used to refer to other parts of the schema.

The SPI slave binding defines a number of properties that all inherited bindings include. This in turn inherits from
device-compatible, which is this:

%YAML 1.1

device-compatible:
 &device-compatible

 title:
 Contraint for devices with compatible properties

 #
 select node for checking when the compatible constraint and

 #
 the device status enable constraint are met.

 selected:
 ["compatible", *device-status-enabled]

 class:
 constraint

 virtual: true

Note that device-compatible is a binding that all devices defined with the DT schema will inherit from.

The selected property will be used to generate a select test that will be used to to find out whether a node should be
checked against a given rule.

The selected rule defines two constraints. The first one is the name of a variable in a derived binding that all its
constraints must satisfy; in this case it’s the jedec,spi-nor compatible constraint in the binding above. The selected
constraint is a reference to the device-status-enabled constraint defined at:

%YAML 1.1

device-enabled:

 title:
 Contraint for enabled devices

 class:
 constraint

 virtual:
 true

 properties:

 status:
 &device-status-enabled

 category:
 optional

 type:
 str

 description:

 Marks device state as enabled

 constraint:
 |

 !exists || streq(v, "okay")

 || streq(v, "ok")

The device-enabled constraint checks where the node is enabled in DT parlance.

Taking those two constraints together, yamldt generates an enable method filter which triggers on an enable device
node that matches any of the compatible strings defined in the jedec,spi-nor binding.

The check method will be generated by collecting all the property constraints (category, type and explicit value
constraints).

Note how in the above example a variable (v) is used as the current property value. The generated methods will provide
it, initialized to the current value to the constraint.

Note that custom, manually written select and check methods are possible but their usage is not recommended for
simple types.

Installation
Install libyaml-dev and the standard autoconf/automake generation tools, then compile with the standard
./autogen.sh, ./configure, and make cycle. Note that the bundled validator requires a working eBPF
compiler and libelf. Known working clang versions with eBPF support are 4.0 and higher.

For a complete example of a port of a board DTS file to YAML take a look in the port/ directory

Usage
The yamldt options available are:

yamldt [options]
 <input-file>

 options
 are:

 -q,
 --quiet Suppress; -q (warnings) -qq (errors) -qqq
 (everything)

 -I,
 --in-format=X Input format type X=[auto|yaml|dts]

 -O,
 --out-format=X Output format type X=[auto|yaml|dtb|dts|null]

 -o,
 --out=X Output file

 -c
 Don't resolve references (object mode)

 -g,
 --codegen Code generator configuration file

 --schema
 Use schema (all yaml files in dir/)

 --save-temps
 Save temporary files

 --schema-save
 Save schema to given file

 --color
 [auto|off|on]

 --debug
 Debug messages

 -h,
 --help Help

 -v,
 --version Display version

 DTB
 specific options

 -V,
 --out-version=X DTB blob version to produce (only 17 supported)

 -C,
 --compatible Bit-exact DTC compatibility mode

 -@,
 --symbols Generate symbols node

 -A,
 --auto-alias Generate aliases for all labels

 -R,
 --reserve=X Make space for X reserve map entries

 -S,
 --space=X Make the DTB blob at least X bytes long

 -a,
 --align=X Make the DTB blob align to X bytes

 -p,
 --pad=X Pad the DTB blob with X bytes

 -H,
 --phandle=X Set phandle format [legacy|epapr|both]

 -W,
 --warning=X Enable/disable warning (NOP)

 -E,
 --error=X Enable/disable error (NOP)

 -b, --boot-cpu=X Force boot

 cpuid to X

-q/--quiet suppresses message output.

The -I/--in-format option selects the input format type. By default it is set to auto which is capable of selecting
based on file extension and input format source patterns.

The -O/--out-format option selects the output format type. By default it is set to auto which uses the output file
extension.

-o/--out sets the output file.

The -c option causes unresolved references to remain in the output file resuling in an object file. If the output format is
set to DTB/DTS it will generate an overlay, if set to yaml it results in a YAML file which can be subsequently
recompiled as an intermediate object file.

The -g/--codegen option will use the given YAML file(s) (or dir/ as in the schema option) as input for the code
generator.

The --schema option will use the given file(s) as input for the checker. As an extension, if given a directory name
with a terminating slash (i.e. dir/) it will recursively collect and use all YAML files within.

The --save-temps option will save all intermediate files/blobs.

--schema-save will save the processed schema and codegen file including all compiled validation filters. Using it
speeds validation of multiple files since it can be used as an input via the –schema option.

--color controls color output in the terminal, while --debug enables the generation of a considerable amount of
debugging messages.

The following DTB specific options are supported:

-V/--out-version selects the DTB blob version; currently only version 17 is supported.

The -C/--compatible option generates a bit-exact DTB file as the DTC compiler.

The -@/--symbols and -A/--auto-alias options generate a symbols and alias entries for all the defined labels
in the source files.

The -R/--reserve, -S/--space, -a/--align and -p/--pad options work the same way as in DTC. -R add
reserve memreserve entries, -S adds extra space, -a aligns and -p pads extra space end of the DTB blob.

The -H/--phandle option selects either legacy/epapr or both phandle styles.

The -W/--warning and -E/--error options are there for command line compatibility with dtc and are ignored.

Finally -d/--boot-cpu forces the boot cpuid.

Automatic suffix detection does what you expect, i.e. an output file ending in .dtb if selecting the DTB generation
option, .yaml if selecting the yaml generation option, and so on.

Given a source file in YAML foo.yaml, you generate a DTB file with:

foo.yaml

foo: &foo

 bar:
 true

 baz:

 -
 12

 -
 8

 -
 *foo

 frob: ["hello", "there"

]

To process it with yamldt:

$ yamldt -o foo.dtb
 foo.yaml

$ ls -l foo.dtb

-rw-rw-r-- 1 panto panto
 153 Jul 27 18:50 foo.dtb

$ fdtdump foo.dtb

/dts-v1/;

// magic:
 0xd00dfeed

// totalsize: 0xe1
 (225)

// off_dt_struct: 0x38

// off_dt_strings: 0xc8

// off_mem_rsvmap: 0x28

// version: 17

// last_comp_version:
 16

// boot_cpuid_phys: 0x0

// size_dt_strings: 0x19

// size_dt_struct: 0x90

/ {

 foo
 {

 bar;

 baz
 = <0x0000000c 0x00000008 0x00000001>;

 frob
 = "hello", "there";

 phandle
 = <0x00000001>;

 };

 __symbols__
 {

 foo
 = "/foo";

 };

};

dts2yaml
dts2yaml is an automatic DTS to YAML conversion tool, that works on standard DTS files which use the
preprocessor. It is capable of detecting macro usage and advanced DTS concepts, like property/node deletes, etc.
Conversion is accurate as long as the source file still looks like DTS source (i.e. it is not using extremely complex
macros).

dts2yaml [options]
 [input-file]

 options
 are:

 -o,
 --output Output file

 -t,
 --tabs Set tab size (default 8)

 -s,
 --shift Shift when outputing YAML (default 2)

 -l,
 --leading Leading space for output

 -d,
 --debug Enable debug messages

 --silent
 Be really silent

 --color
 [auto|off|on]

 -r,
 --recursive Generate DTS/DTSI included files

 -h,
 --help Help

 --color [auto|off|on]

All the input files will be converted to yaml format. If no output option is given, the output will be named according to
the input filename. So foo.dts will yield foo.yaml and foo.dtsi will yield foo.yamli.

The recursive option converts all included files that have a dts/dtsi extension as well.

Test suite
To run the test-suite you will need a relatively recent DTC compiler, YAML patches are no longer required.

The test-suite first converts all the DTS files in the Linux kernel for all architectures to YAML format using
dts2yaml. Afterwards, it compiles the YAML files with yamldt and the DTS files with dtc. The resulting dtb files
are bit-exact because the -C option is used.

Run make check to run the test suite.
Run make validate to run the test suite and perform schema validation checks. It is recommended to use the
--keep-going flag to continue checking even in the presence of validation errors.

Currently out of 1379 DTS files, only 6 fail conversion:

exynos3250-monk

 exynos4412-trats2 exynos3250-rinato exynos5433-tm2

exynos5433-tm2e

All 6 use a complex pin mux macro declaration that it is not possible to automatically convert.

Workflow
It is expected that the first thing a user of yamldt would want to do is to convert an existing DTS configuration to
YAML.

The following example uses the beaglebone black and the am335x-boneblack.dts source as located in the port/
directory.

Compile the original DTS source with DTC

$ cc -E -I ./ -I
 ../../port -I ../../include -I ../../include/dt-bindings/input

 -nostdinc
 -undef -x assembler-with-cpp -D__DTS__ am335x-boneblack.dts

 | dtc -@ -q -I dts -O dtb - -o

 am335x-boneblack.dtc.dtb

Use dts2yaml to convert to yaml

$ dts2yaml -r
 am335x-boneblack.dts

$ ls *.yaml*

am335x-boneblack-common.yamli
 am335x-bone-common.yamli am33xx-clocks.yamli

am33xx.yamli

 tps65217.yamli

Note the recursive option automatically generates the dependent include files.

$ cc -I ./ -I ../../port
 -I ../../include -I ../../include/dt-bindings/input

 -nostdinc
 -undef -x assembler-with-cpp -D__DTS__ am335x-boneblack.yaml |

 ../../yamldt -C -@ - -o

 am335x-boneblack.dtb

$ ls -l *.dtb

-rw-rw-r-- 1 panto panto
 50045 Jul 27 19:10 am335x-boneblack.dtb

-rw-rw-r-- 1 panto panto
 50045 Jul 27 19:07 am335x-boneblack.dtc.dtb

$ md5sum *.dtb

3bcf838dc9c32c196f66870b7e6dfe81
 am335x-boneblack.dtb

3bcf838dc9c32c196f66870b7e6dfe81

 am335x-boneblack.dtc.dtb

Compiling without the -C option results in a file with the same functionality, but it is slightly smaller due to better
string table optimization.

$ yamldt
 am335x-boneblack.dtc.yaml -o am335x-boneblack.dtb

$ ls -l *.dtb

-rw-rw-r-- 1 panto panto
 50003 Jul 27 19:12 am335x-boneblack.dtb

-rw-rw-r--

 1 panto panto 50045 Jul 27 19:07 am335x-boneblack.dtc.dtb

Note that the CPP command line is the same, so no changes to header files are required. dts2yaml will detect macro
usage and convert from the space delimited form that DTC uses to the comma delimted form used by YAML.

yamldt as a DTC compiler
yamldt supports all dtc options, so using it as a dtc replacement is straightforward.

Using it for compiling the Linux Kernel DTS files is as simple as:

$

 make DTC=yamldt dtbs

Note that by default the compatibility option (-C) is not used, so if you need to be bit-compatible with DTC pass the -C
flag as follows:

$

 make DTC=yamldt DTC_FLAGS="-C"

Generally, yamldt is a little bit faster than dtc and generates somewhat smaller DTB files (if not using the -C
option). However, due to internally tracking all parsed tokens and their locations in files, it is capable of generating
accurate error messages that are parseable by text editors for automatic movement to the error.

For example, with this file containing an error:

/* duplicate label */

/dts-v1/;

/ {

 a:
 foo { foo; };

 a:
 bar { bar; };

};

yamldt will generate the following error:

$ yamldt -I dts -o dts
 -C duplabel.dts

duplabel.dts:8:2: error:
 duplicate label a at "/bar"

 a:
 bar {

 ^

duplabel.dts:4:2: error:
 duplicate label a is defined also at "/foo"

 a:
 foo {

 ^

while dtc will generate:

$ yamldt -I dts -o dts
 -C duplabel.dts

dts: ERROR
 (duplicate_label): Duplicate label 'a' on /bar and /foo

ERROR:

 Input tree has errors, aborting (use -f to force output)

Known features of DTC that are not available are:

• Only version 17 DT blobs are supported. Passing a -V argument requesting a different one will result in error.
• Assembly output is not supported.
• Assembly and filesystem inputs are not supported.
• The warning and error options are accepted, but they don’t do anything. yamldt uses a validation schema for

application specific errors and warnings so those options are superfluous.

Notes on DTS to DTS conversion
The conversion from DTS is straight forward:

For example:

/* foo.dts */

/ {

 foo
 = "bar";

 #cells
 = <2>;

 phandle-ref
 = <&ref 1>;

 ref:
 refnode { baz; };

};

foo.yaml

foo: "bar"

"#cells": 2

phandle-ref: [*ref 1]

refnode: &ref

 baz: true

Major differences between DTS & YAML:

• YAML is using # as a comment marker, therefore properties with a # prefix get converted to explicit string
literals:

#cells

 = <0>;

to YAML

"#cells":

 0

• YAML is indentation sensitive, but it is a JSON superset. Therefore the following are equivalent:

foo:

 [1, 2]

foo:

 -
 1

 - 2

• The labels in DTS are defined and used as:

foo: node { baz; };

bar

 = <&foo>;

In YAML the equivalent methods are called anchors and are defined as follows:

node: &foo

 baz:
 true

bar:

 *foo

• Explicit tags in YAML are using !, so the following:

mac

 = [0 1 2 3 4 5];

is used like this in YAML:

mac:

 !int8 [0, 1, 2, 3, 4, 5]

• DTS uses spaces to seperate array elements, YAML uses either indentation or commas in JSON form. Note that
yamldt is smart enough to detect the DTS form and automatically convert in most cases:

pinmux

 = <0x00 0x01>;

In YAML:

pinmux:

 -
 0x00

 - 0x01

or:

pinmux:

 [0x00, 0x01]

• Path references () automatically are converted to pseudo YAML anchors (of the form yaml_pseudo__n__):

/ {

 foo
 { bar; };

};

ref

 = <&/foo>;

In YAML:

foo: &yaml_pseudo__0__

ref:

 *foo

• Integer expression evaluation, similar in manner to that which the CPP preprocessor performs, is available.
This is required in order for macros to work. For example, given the following two files:

/* add.h */

#define

 ADD(x, y) ((x) + (y))

macro-use.yaml

#include "add.h"

result:

 ADD(10, 12)

The output after the cpp preprocessor pass:

result:

 ((10) + (12))

Parsing with yamldt to DTB will generate a property:

result

 = <22>;

Validation example
For this example we’re going to use port/am335x-boneblack-dev/. An extra rule-check.yaml file has been added where
validation tests can be performed.

That file contains a single jedec,spi-nor device:

*spi0:

 m25p80@0:

 compatible:
 "s25fl256s1"

 spi-max-frequency:
 76800000

 reg:
 0

 spi-tx-bus-width:
 1

 spi-rx-bus-width:
 4

 "#address-cells":
 1

 "#size-cells": 1

This is a valid device node, so running validate produces the following:

$ make validate

cc -E -MT
 am33xx.cpp.yaml -MMD -MP -MF am33xx.o.Yd -I ./ -I ../../port -I

 ../../include -I ../../include/dt-bindings/input -nostdinc -undef
 -x assembler-with-cpp -D__DTS__ -D__YAML__ am33xx.yaml
 >am33xx.cpp.yaml

cc -E -MT
 am33xx-clocks.cpp.yaml -MMD -MP -MF am33xx-clocks.o.Yd -I ./ -I
 ../../port -I ../../include -I ../../include/dt-bindings/input
 -nostdinc -undef -x assembler-with-cpp -D__DTS__ -D__YAML__
 am33xx-clocks.yaml >am33xx-clocks.cpp.yaml

cc -E -MT
 am335x-bone-common.cpp.yaml -MMD -MP -MF am335x-bone-common.o.Yd -I
 ./ -I ../../port -I ../../include -I
 ../../include/dt-bindings/input -nostdinc -undef -x
 assembler-with-cpp -D__DTS__ -D__YAML__ am335x-bone-common.yaml
 >am335x-bone-common.cpp.yaml

cc -E -MT
 am335x-boneblack-common.cpp.yaml -MMD -MP -MF
 am335x-boneblack-common.o.Yd -I ./ -I ../../port -I ../../include
 -I ../../include/dt-bindings/input -nostdinc -undef -x
 assembler-with-cpp -D__DTS__ -D__YAML__
 am335x-boneblack-common.yaml >am335x-boneblack-common.cpp.yaml

cc -E -MT
 am335x-boneblack.cpp.yaml -MMD -MP -MF am335x-boneblack.o.Yd -I ./
 -I ../../port -I ../../include -I ../../include/dt-bindings/input
 -nostdinc -undef -x assembler-with-cpp -D__DTS__ -D__YAML__
 am335x-boneblack.yaml >am335x-boneblack.cpp.yaml

cc -E -MT
 rule-check.cpp.yaml -MMD -MP -MF rule-check.o.Yd -I ./ -I
 ../../port -I ../../include -I ../../include/dt-bindings/input
 -nostdinc -undef -x assembler-with-cpp -D__DTS__ -D__YAML__
 rule-check.yaml >rule-check.cpp.yaml

../../yamldt -g
 ../../validate/schema/codegen.yaml -S ../../validate/bindings/ -y
 am33xx.cpp.yaml am33xx-clocks.cpp.yaml am335x-bone-common.cpp.yaml
 am335x-boneblack-common.cpp.yaml am335x-boneblack.cpp.yaml
 rule-check.cpp.yaml -o am335x-boneblack-rules.pure.yaml

jedec,spi-nor:

 /ocp/spi@48030000/m25p80@0 OK

Note the last line. It means the node was checked and was found OK.

Editing the rule-check.yaml file, let’s introduce a couple of errors. The following output is generated by commenting
out the reg property # reg: 0:

$ make validate

cc -E -MT
 rule-check.cpp.yaml -MMD -MP -MF rule-check.o.Yd -I ./ -I
 ../../port -I ../../include -I ../../include/dt-bindings/input
 -nostdinc -undef -x assembler-with-cpp -D__DTS__ -D__YAML__
 rule-check.yaml >rule-check.cpp.yaml

../../yamldt -g
 ../../validate/schema/codegen.yaml -S ../../validate/bindings/ -y

 am33xx.cpp.yaml am33xx-clocks.cpp.yaml am335x-bone-common.cpp.yaml
 am335x-boneblack-common.cpp.yaml am335x-boneblack.cpp.yaml
 rule-check.cpp.yaml -o am335x-boneblack-rules.pure.yaml

jedec,spi-nor:
 /ocp/spi@48030000/m25p80@0 FAIL (-2004)

../../validate/bindings/jedec,spi-nor.yaml:15:5:
 error: missing property: property was defined at
 /jedec,spi-nor/properties/reg

 reg:

 ^~~~

Note the descriptive error and the pointer to the missing property in the schema.

Making another error, assign a string to the reg property reg: "string":

$ make validate

$ make validate

cc -E -MT
 rule-check.cpp.yaml -MMD -MP -MF rule-check.o.Yd -I ./ -I
 ../../port -I ../../include -I ../../include/dt-bindings/input
 -nostdinc -undef -x assembler-with-cpp -D__DTS__ -D__YAML__
 rule-check.yaml >rule-check.cpp.yaml

../../yamldt -g
 ../../validate/schema/codegen.yaml -S ../../validate/bindings/ -y
 am33xx.cpp.yaml am33xx-clocks.cpp.yaml am335x-bone-common.cpp.yaml
 am335x-boneblack-common.cpp.yaml am335x-boneblack.cpp.yaml
 rule-check.cpp.yaml -o am335x-boneblack-rules.pure.yaml

jedec,spi-nor:
 /ocp/spi@48030000/m25p80@0 FAIL (-3004)

rule-check.yaml:8:10:
 error: bad property type

 reg:
 "string"

 ^~~~~~~~

../../validate/bindings/jedec,spi-nor.yaml:15:5:
 error: property was defined at /jedec,spi-nor/properties/reg

 reg:

 ^~~~

Note the message about the type error, and the pointer to the location where the reg property was defined.

Finally, let’s make an error that violates a constraint.

Change the spi-tx-bus-width value to 3:

$ make validate

cc -E -MT
 rule-check.cpp.yaml -MMD -MP -MF rule-check.o.Yd -I ./ -I
 ../../port -I ../../include -I ../../include/dt-bindings/input
 -nostdinc -undef -x assembler-with-cpp -D__DTS__ -D__YAML__
 rule-check.yaml >rule-check.cpp.yaml

../../yamldt -g
 ../../validate/schema/codegen.yaml -S ../../validate/bindings/ -y
 am33xx.cpp.yaml am33xx-clocks.cpp.yaml am335x-bone-common.cpp.yaml
 am335x-boneblack-common.cpp.yaml am335x-boneblack.cpp.yaml
 rule-check.cpp.yaml -o am335x-boneblack-rules.pure.yaml

jedec,spi-nor:
 /ocp/spi@48030000/m25p80@0 FAIL (-1018)

rule-check.yaml:9:23:
 error: constraint rule failed

 spi-tx-bus-width:
 3

 ^

../../validate/bindings/spi/spi-slave.yaml:77:19:
 error: constraint that fails was defined here

 constraint:
 v == 1 || v == 2 || v == 4

 ^~~~~~~~~~~~~~~~~~~~~~~~~~

../../validate/bindings/spi/spi-slave.yaml:74:5:
 error: property was defined at
 /spi-slave/properties/spi-tx-bus-width

 spi-tx-bus-width:

Note how the offending value is highlighted. The offending constraint and property definition are aslo listed.

