.u Visual - Ubiquitous Visual Terminal -
Fujitsu Laboratories Ltd.

What is demonstrated

Characteristics

A triple play function of broadcast receiving, telephony and internet access with high level of quality is realized by the Fujitsu media processor FR-V and Linux OS.

Embedded with multi-function applications

- Full Browser (called Inspirium)
- AV Player
- Wireless IP video telephone
- Wireless IP video transceiver

High speed sending and receiving of moving pictures

IP video phone and wireless IP video transceiver with a capability of sending and receiving QVGA-sized pictures at a speed of 15 frames per second (industry-leading levels of performance).

Specifications

<table>
<thead>
<tr>
<th>items</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size/ Weight</td>
<td>165x73x26mm/ 245g (battery included)</td>
</tr>
<tr>
<td>Main LSI</td>
<td>CPU: FR461 made by Fujitsu (400MHz, 8 parallel operations per cycle) SDRAM 128MB, Flash ROM 64MB</td>
</tr>
<tr>
<td>Display</td>
<td>3.7inch VGA(640x480) TFT Color LCD</td>
</tr>
<tr>
<td>Camera</td>
<td>CMOS 0.35 million pixel</td>
</tr>
<tr>
<td>Wireless LAN</td>
<td>Wireless LAN module (IEEE802.11b compliant) embedded</td>
</tr>
<tr>
<td>External interface</td>
<td>CF, SDIO, USB (in the cradle)</td>
</tr>
<tr>
<td>OS</td>
<td>Embedded Linux for FR-V</td>
</tr>
<tr>
<td>GUI</td>
<td>X-Window System, WideStudio/ MWT</td>
</tr>
<tr>
<td>Middleware Application</td>
<td>• MPEG-4 codec</td>
</tr>
<tr>
<td></td>
<td>• AAC codec</td>
</tr>
<tr>
<td></td>
<td>• AVC/ H.264 dec</td>
</tr>
<tr>
<td></td>
<td>• Wireless IP video phone</td>
</tr>
<tr>
<td></td>
<td>• wireless IP video transceiver</td>
</tr>
</tbody>
</table>
Graphics Subsystem in an Embedded World

What is demonstrated

A DirectFB and UHAPI compliant DTV platform playing an ATSC HD stream

System Information

Philips TV810 Hybrid DTV with PNX8550
- MIPS/250MHz runs Linux 2.6.10
- TriMedia media processing cores
- Dedicated media and 2D Gfx hardware accelerators
- Integrated DTV/DMA middleware from AviFEX

How was the Linux improved

By integrating DirectFB and UHAPI directly, instead of using the Linux FB device.

Simplified architecture and implementation

- Avoids going through very limited FB API layer
- Solves resource management issues
- Much improved interoperability
- Modular approach
VideoClip Player and Linux
Armin Gerritsen / Philips Semiconductors

What is demonstrated

How was the Linux used

Linux played an essential role:
- Used during prototyping
- Used as main OS

Many different use-cases:
- Playback on TV-out and LCD
- Many connectivity hooks

Hardware Information

Philips VCP-1 with Nexperia™ PNX0106
- ARM926/133MHz runs Linux
- EPICS media processing core
- Various connectivity hooks
- 32MByte system memory
MythTV on Nexperia

Klaas de Waal / Philips Semiconductors

What is demonstrated

![MythTV Frontend](image)

MythTV-frontend on PNX8550 playing HD content

Hardware Information

Philips STB810 IP-STB with PNX8550
- MIPS/250MHz runs Linux
- TriMedia media processing cores
- Dedicated hardware accelerators
- 128MByte system memory

How was the Linux improved

Use native compilation on MIPS:
- Avoids cross-compilation problems
- Only configure/make/make install!!

Improve compilation speed with:
- distcc for distributed compilation
- Use PC as “compute server”
UHAPI4Linux: open source implementation of UHAPI

Ruud Derwig

What is demonstrated

An open source implementation of UHAPI. UHAPI is an open standard for the audio/video streaming API. The implementation supports a number of UHAPI "logical components", among others the ones shown in the streaming graph below.

How was the Linux improved

Up to now Linux lacked a complete, well-defined, and consistent API for audio/video streaming. UHAPI fills this gap, and this open source implementation is an example implementation of UHAPI. The (proposed) CELF Audio/Video/Graphics 2.0 specification uses UHAPI as the main interface for controlling audio/video and DirectFB/OpenGL ES for graphics.

Hardware Information

Standard PC with standard tuner card.

Availability

http://sourceforge.net/projects/uhapi4linux/

UHAPI specification: www.uhapi.org

(and also on the CELF wiki pages)
Embedded Linux based Terrestrial DMB TV
Samsung Electronics

What is demonstrated

• DMB(Digital Multimedia Broadcasting) Demo Environment
 - System
 + MPEG2, MPEG4 System
 - Video
 + coding scheme: MPEG4 Part-10 H.264
 + resolution: QVGA size (320X240)
 + frame rate: 30 (f/s)
 - Audio
 + coding scheme: MPEG4-BSAC
 + FM stereo quality sound
 - Total bitrate under 500kbps
 - One ensemble of 1.5Mhz in VHF 6Mhz TV channel

• DMB TV Receiver
 - Linux 2.6.11 kernel
 - Multithread DMB TV application

How was the Linux improved

• DMB SW Diagram implemented in Linux

Hardware Information

• DMB HW : Channel module from Samsung
• CPU : AU1200 (MIPS32 core SOC) from AMD
• RAM : 128MBytes DDR SDRAM
• Flash Memory : 64MBytes onenand

Patch Availability

Patch release schedule is not decided yet.
Linux Kernel CPU Resource Reservation

Hitachi, Lineo Solutions

What is demonstrated

Linux assigns higher priority to a real-time process than a normal process so that no other processes could run if some real-time process would not release the CPU resource. In order to realize comfortable GUI in embedded systems like DTV which consists of real-time processes, interactive processes and background processes, we need to assign the CPU resource to a particular process which takes care of GUI.

We implement CPU Resource Reservation Feature which specifies Upper Limit as well as Lower Limit of CPU usage for a process so that we could get response in acceptable time from a particular process.

How was the Linux improved

Block of RT

- RT processes are limited in maximum execution time in a defined period

Priority Boost Idea

- NORMAL processes are boosted temporarily to RT processes, and minimum execution time is guaranteed

Scheduler

- Runqueue H L
 - Active
 - Expired

Process Group

- Priority Normal -> RT
- Priority RT -> Normal

Linux Timer

- Periodic
- Execution Time

- Priority Normal
- Priority Boost

Calculate Process Load

Demonstration

Hardware Information

RealView Versatile ARM926EJ-S

Patch Availability

The patch will be available in the forum patch archive.
Kprobes Implementation for Embedded System

Hitachi, Lineo Solutions

What is demonstrated

Description: Kprobes is a dynamic instrumentation system in the mainline 2.6 Linux Kernel for x86 architecture. Kprobes allows us to get information about the insight of kernel operation without rebuilding or rebooting a kernel. We will talk about the Kprobes implementation for the SH-4 architecture, and show some demos.

Operation

<table>
<thead>
<tr>
<th>Pre-handler:</th>
<th>p->addr=0xb021ca0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call trace:</td>
<td>insmod /lib/modules/2.6.15/kernel/drivers/char/kprobe_example.ko</td>
</tr>
</tbody>
</table>

Execution Result

<table>
<thead>
<tr>
<th>Operation</th>
<th>Disassembled Code</th>
</tr>
</thead>
</table>
| Insmod | ```
\# insmod /lib/modules/2.6.15/kernel/drivers/char/kprobe_example.ko
``` |

## Hardware Information

- **Renesas RTS7751R2D (SH4)**

## How was the Linux improved

### Kprobes Handler

- **KEI#1**
- **Trapa C3FF**

### Kprobes Handler Function

```c
int handler_pre(struct kprobe *p, struct pt_regs *regs) {
 printf("pre_handler: p->addr=%p\n", p->addr);
 dump_stack();
 return 0;
}
```

### Operation

- **Insmod**

### Operation

- **Operation**

## Patch Availability

The patch will be available in the forum patch archive.
ARM MPCore™ and Power Management

John Goodacre

What is demonstrated

• **Includes four ARM11™ class CPUs**
  – Fully compatible with ARMv6K ISA
  – 32-bit RISC processing core with ARM and Thumb instruction sets, plus SIMD and Jazelle support

• **Synthesis configurability**

• **High efficiency coherent memory sub system**
  – Localized resolution and control over cache coherency

• **Software controlled interrupt subsystem**
  – Ability to migrate interrupt handlers to least loaded processor with integrated operating system kernel support
  – Low-latency inter-processors (IPI) and I/O interrupt distribution.

• **Low power design**
  – Minimize system overhead and power requirements

• **Compatible with existing design flows**

Hardware Information

• ARM RealView® Platform
• ARM11™ MPCore™ Processor test chip, 300Mhz

How was the Linux improved

• **Power Management**
  – Demonstrates techniques for both dynamic and static energy reduction
  – Power advantages of multiprocessing
  – Integrated into current mainline kernels
  – High performance power-aware spin locks
  – Ultra low-latency access to shared memory

• **CodeSourcery tools integration in GCC 4.1**
  – Full support for thread local storage
    • New Posix Thread Library (NPTL)
    • Memory barriers integration
  – Better than linear scalability for multitasking applications
    • Reduced context switch times
    • Improved cache utilization

Patch Availability

Patches contributed to main kernel [www.kernel.org](http://www.kernel.org)
OpenGL ES V1.1 running under ARM Linux using PowerVR MBX 3D acceleration

What is demonstrated

An ARM prototyping platform consisting of:

- ARM926EJ-S with VFP9 floating point unit
- MBX HR-S with VGP graphics acceleration block

Running a variety of example applications through the Linux version of the OpenGL ES V1.1 MBX driver.

This demonstrates the integration of OpenGL ES into an embedded Linux environment with 3D graphics acceleration.

Additionally the drivers and application make significant use of the Vector Floating Point Unit (or VFP) for geometry and physics calculations.

How was the Linux improved

- Adding OpenGL ES support provides a common API for application to access graphics functionality.
- OpenGL ES provides a fully featured graphics API in a small footprint by removing legacy functionality.
- Support for the VFP floating point unit was also added to the kernel used in this demo.

Hardware Information

ARM RealView® Platform for ARM926EJ-S

Patch Availability
ARM TrustZone™ Technology with Linux

Ian Rickards

What is demonstrated

Linux applications using secure services provided by software running in TrustZone on ARM1176JZ(F)-S.

Demonstrated with
- Linux Hack Attack demo

Other Applications Include
- Secure client-server communication (cryptography)
- Secure storage (key management and SIMLock)
- Image verification (detect OS changes/hacks)
- Secure payment services (e-commerce) and trusted User Interface.

TrustZone provides a hardware enforced separation of Normal and Secure execution worlds.

This demo uses Linux kernel 2.6.6, ARM Linux and TrustZone device driver.

Hardware Information
- RealView® Integrator™ Compact Platform
- ARM1176JZ(F)-S FPGA implementation

How was the Linux improved

- Isolated execution environment
- Secure storage (e.g. key management)
- Image verification and Secure Boot
- Crypto services to secure and transmit key data
- Secure e-commerce via secure peripherals enabling trusted user interface

Patch Availability
- ARM1176JZ(F)-S support at www.kernel.org
**ARM Java™ Acceleration**

Philippe Robin

---

**What is demonstrated**
- Direct execution of bytecode in hardware
- Highest performance Java with real applications
- Minimal memory overhead
- Low power-consumption
- Simple and quick product integration
- Robust and proven technology
- Available on a wide variety of Java technologies from a number of Java platform vendors
- Optimum solution for mobile Java platforms with Linux

**How was the Linux improved**
- Kernel support for Jazelle execution
  - Cache handling routines
  - Exception handling
- Fully exploit hardware capabilities available with Jazelle enabled ARM processors
- Optimized execution of Java virtual machines

---

**Hardware Information**
ARM RealView® PB-926EJ-S

**Patch Availability**
[www.kernel.org](http://www.kernel.org) mainline tree

---

**NTT/DoCoMo's 902i Linux Phones using ARM11 and Jazelle**
**Digital Entertainment Center**

**ETRI**

**What is demonstrated**

Digital Entertainment Center (DEC) is an embedded Linux (Qplus) based home theater platform for sharing contents of remote PCs. DEC’s several services is demonstrated.

- An extended Freevo platform for sharing contents of remote PCs on the embedded Linux STB
- Remote Media Sharing Service and Remote UI Sharing Service by using UPnP technologies
- Embedded Linux target configuration Method
- Browsing and streaming of AV contents by using UPnP AV architecture
- Sharing and interacting with remote PC screen by using UPnP RemoteUI architecture
- An integrated model about UPnP AV Control Point and MediaRenderer on the embedded Linux
- An integrated model about UPnP RemoteUI Control Point and RemoteUI Client on the embedded Linux

**Hardware Information**

- Board: Asus P5ND2
- Processor: Intel Pentium 4 Prescott 660 (3.6GHz)
- Chipset: nVIDIA nForce4
- System Memory: 1Gbyte
- VGA: Radeon X800 XL GDDR3 256MB

**How was the Linux improved**

We constructed DEC with Remote Media Sharing Services, Remote UI Sharing Service and UI application Programs, CELF kernel Patch, embedded Linux configuration toolkit

- Various UPnP and Application technologies
- CELF released patch included
- Embedded Linux target configuration toolkit (Target Builder)

**Patch Availability**

- Target Builder is already opened in CELF wiki page
- DEC related application will be available
# XIP-Cramfs
Justin Treon – Intel Corporation

<table>
<thead>
<tr>
<th>What is demonstrated</th>
<th>How was the Linux improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>▸ Boot time comparison</td>
<td>▸ Faster boot time</td>
</tr>
<tr>
<td>▸ RAM usage comparison</td>
<td>▸ Faster application launch time</td>
</tr>
<tr>
<td>▸ Performance comparison</td>
<td>▸ Reduced RAM requirement</td>
</tr>
<tr>
<td>▸ Video</td>
<td>▸ Reduced bill of material</td>
</tr>
<tr>
<td>▸ Gaming</td>
<td></td>
</tr>
</tbody>
</table>

An eXecute In Place (XIP) based system compared to a Store and Download (SnD) based system

The demonstration shows that the XIP system is actually faster that the SnD system while using less RAM

<table>
<thead>
<tr>
<th>Hardware Information</th>
<th>Patch Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>XIP system: Intel M18 NOR Flash and 32MB of RAM</td>
<td>Publicly available, see booth handouts</td>
</tr>
<tr>
<td>SnD system: NAND Flash and 64MB of RAM</td>
<td></td>
</tr>
</tbody>
</table>

The patch allows NOR Flash based system to execute code from Flash rather than pulling applications from Flash and decompressing them in RAM

Manufacturers are able to squeeze in to the smallest RAM/FLASH combination to reduce their bill of material and boot time
Mobile Phone Based on CE Linux

NEC Corporation

What is demonstrated

**N900iL**
(WCDMA/ Wireless LAN Dual-Mode)

- Wireless LAN Browser

**N902i**
(WCDMA with PoC)

- Improvement in performance of real time operations
- Reduction of application boot times

How was the Linux improved

1. Function

NEC's Linux technology has built the following mobile-phone functionality using OSS modules (SIP, RTP, RTCP, etc.). This has been achieved against a background of actively seeking external alliances with other developers.

- Wireless LAN Access
- PoC (Push-To-Talk over Cellular)

Telephony API specification has been proposed to MPPWG.

2. Performance

Approaching RTOS-based phone levels of performance.

- Minimized start up time
- Reduction of application boot times
DirectFB implementation for real DTV SoC

What is demonstrated

Renesas adopted DirectFB technology to the latest Digital TV SoC that support Japanese DTV standard requirement (ARIB).

DirectFB modified to support accelerated 5 layered 2D plane

DirectFB runs on Linux kernel 2.6.8-1 big-endian mode.

GTK or other graphics widgets and/or various EPG browser can be combined with DirectFB to utilize 2D acceleration.

Hardware Information

SuperH processor (SH-X2) + M32R: dual core architecture incorporated with high definition support 2D graphics engine.

Note: This device is pre-production evaluation sample.

How was the Linux improved

- Renesas collaborate with DirectFB project to utilize and enhance well defined opensource graphics API to support Japanese DTV

  -- YUV pixel format is supported in DirectFB
  -- ARIB 5 plane surface architecture support
  -- Special gfx driver to utilize SoC built-in 2D acceleration and hardware scaler and bulitter

- Renesas try to combine ULDD (User Level Device Driver) with DirectFB to achieve enough stream throughput with graphics

Bench Mark Test article

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fill Rectangle</td>
<td>98.693</td>
<td>53.25</td>
</tr>
<tr>
<td>Fill Rectangle (blend)</td>
<td>91.776</td>
<td>no data</td>
</tr>
<tr>
<td>Fill Rectangles [10]</td>
<td>98.873</td>
<td>8.57</td>
</tr>
<tr>
<td>Fill Rectangles [10] (blend)</td>
<td>91.784</td>
<td>no data</td>
</tr>
<tr>
<td>Fill Spans</td>
<td>22.282</td>
<td>no data</td>
</tr>
<tr>
<td>Blit</td>
<td>55.593</td>
<td>32.56</td>
</tr>
</tbody>
</table>

A = Renesas DTV Soc (SH-X2 400MHz w/2D accelerator)
B = Intel Celeron 450MHz w/Matrox Millennium

Patch Availability

= Under consideration at this moment =

DirectFB would migrate to support ARIB requirement like YUV input.

Renesas plan to distribute custom gfx driver to utilize built-in 2D
Improving startup time using Software Suspend

Hiroki Kaminaga

What is demonstrated

- **Startup time of each method**
  - Normal startup
    - normal startup time from cold boot
  - Swsusp
    - startup using software suspend, or suspend to flash (hibernation)
  - Snapshot boot
    - startup using image created by software suspend, getting aid from boot loader to shorten startup time

How was the Linux improved

- **Startup time**
  - swsusp support for ARM implemented

- **Co-operation of linux and boot loader**
  - Copying of snapshot image is done in boot loader side, and jumps to kernel-resume-point

Hardware Information

- **OMAP 5912 Starter Kit**
  - http://tree.celinuxforum.org/CelfPubWiki/OSK

Patch Availability

Data of each method / Issues met in snapshot boot

Measurement: CONFIG_PRINTK_TIMES
- Init: time until exec() init
- ash: time until thaw process
- mplayer: time until thaw process, video output for normal method.

Interface between boot loader and kernel:
- many devices needed initialization and setups at boot loader side
- lacks generalization, device power up and device resume calls in kernel should take care of this

- snapshot data structure vary at different kernel version
Mobile Phone Powered by Linux
Masashige Mizuyama / Panasonic Mobile Communications

What is demonstrated
Mobile Phone built on top Linux and X
Featuring Digital TV

<table>
<thead>
<tr>
<th>X Server</th>
<th>Apps Phone, Digital TV, Java, …</th>
<th>Toolkit (Gtk+ etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux</td>
<td>MontaVista CEE3.1 (2.4.20based)</td>
<td></td>
</tr>
</tbody>
</table>

How was the Linux improved

“Allocate on Write”
Defer RAM page allocation for .data until process writes to the page (Normal Linux allocates the page on either read or write)

Implementation
No change in kernel code.
Small change to the runtime dynamic linker:
1. Drop PROT_WRITE bit when “mmap”ing ELF data segment
   By this, the kernel (CRAMFS) maps the segment to ROM page just as XIP text segment.
2. Then, set PROT_WRITE by mprotect()
   By this, copy-on-write is enable to the mapped segment memory.
   Page is copied to RAM when write occurs.
   Until then read is routed to ROM.

Key technologies to make it work on Linux
1. Reduction of memory footprint
   - “Allocate on Write” (our original improvements)
   - XIP (eXecute In Place), ARM Thumb® code
2. Prelink to improve key response/boot time
3. Avoiding priority inversion for RT Apps by eliminating inter-threads race condition (heap, file, mutex …)

Hardware Information
Panasonic UniPhier® (ARM11 core included)

Patch Availability
Some patches including “Allocate on Write” and thumb® tool chain are available on CELF public Wiki pages.